In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhance...In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.展开更多
Deactivation is common in cerebral functional imaging. However, the physiological mechanisms responsible for this phenomenon remain poorly understood. The present study analyzed 12 ischemic stroke patients, who were r...Deactivation is common in cerebral functional imaging. However, the physiological mechanisms responsible for this phenomenon remain poorly understood. The present study analyzed 12 ischemic stroke patients, who were randomly assigned to two groups: one group underwent sham needling and true needling at the Waiguan (SJ 5) in the healthy upper limb and the other group underwent sham and true needling at a sham point. Functional magnetic resonance imaging results showed no activation points in brain tissues following needling at SJ 5. However, compared with sham needling at SJ 5, true needling at SJ 5 deactivated Broadmann 4, 6, 24, and 32 areas. In addition, compared to needling at the sham point, true needling at SJ 5 deactivated bilateral hypothalamus. Results demonstrated that SJ 5 needling in the healthy upper limb resulted in specific directional brain action, as manifested by deactivation of cerebral areas related to motor (Broadmann 4 and 6), emotion (hypothalamus), and cognition (Broadmann 24, 32).展开更多
The action of needling in acupoint therapy has to first be regulated and integrated by the brain, and then it affects the target organ and manifests its therapeutic effects, which is dependent on the specificity of th...The action of needling in acupoint therapy has to first be regulated and integrated by the brain, and then it affects the target organ and manifests its therapeutic effects, which is dependent on the specificity of the acupoints. The authors put forward the hypothesis of the "acupoint-related brain". Single-photon emission computed tomography was used to explore the activation of brain regions following true needling in true acupoint Waiguan (SJ 5), sham needling in true acupoint Waiguan, true needling in a sham point, and sham needling in a sham point. The relative specificity of Waiguan in normal persons was analyzed by observing changes in regional cerebral blood flow. Compared with the sham needling in true acupoint group and sham needling in the sham point group, acupuncture at Waiguan can activate brain regions controlling movement. Compared with true needling in the sham point group, acupuncture at Waiguan can also activate brain regions controlling movement. The results suggest that the specificity of needling at an acupoint is related to certain activated cerebral functional regions, which are associated with the clinical application of the acupoint.展开更多
The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristi...The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristics of the PCM clearly indicate that four states can be stored in this stacked film structure. Qualitative analysis indicates that the multiple-state storage capability of this stacked film structure is due to successive crystallizations in different Si-Sb-Te layers triggered by different amplitude currents.展开更多
Functional brain imaging studies of the specificity of acupoint stimulation have revealed that needling at particular acupoints can induce activation of corresponding brain areas, examined in physiological and patholo...Functional brain imaging studies of the specificity of acupoint stimulation have revealed that needling at particular acupoints can induce activation of corresponding brain areas, examined in physiological and pathological states. The present study examined Waiguan (SJ 5) as the acupoint of interest. We tested five conditions: a true needling at true acupoint group, a sham needling at true acupoint group, a true needling at sham acupoint group, a sham needling at sham acupoint group, and a healthy control group. We examined changes in glucose metabolism in different functional cortical regions to determine the specific brain activation elicited by acupuncture at Waiguan. The results revealed that true and sham acupuncture at the same acupoint activated different brain regions. In addition, applying acupuncture at a genuine acupoint and a neighboring sham acupoint activated different brain regions. These findings suggest that acupuncture at Waiguan causes activation in some brain regions.展开更多
基金supported by the National Basic Research Program of China(973 Program),No.2006CB504505,2012CB518504the Third Key Construction Program of "211 Project" of Guangdong Province
文摘In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.
基金the National Basic Research Program of China (973 Program), No. 2006CB504505, 2012CB518504the 3 re Key Construction Program of "211 Project" of Guangdong Province
文摘Deactivation is common in cerebral functional imaging. However, the physiological mechanisms responsible for this phenomenon remain poorly understood. The present study analyzed 12 ischemic stroke patients, who were randomly assigned to two groups: one group underwent sham needling and true needling at the Waiguan (SJ 5) in the healthy upper limb and the other group underwent sham and true needling at a sham point. Functional magnetic resonance imaging results showed no activation points in brain tissues following needling at SJ 5. However, compared with sham needling at SJ 5, true needling at SJ 5 deactivated Broadmann 4, 6, 24, and 32 areas. In addition, compared to needling at the sham point, true needling at SJ 5 deactivated bilateral hypothalamus. Results demonstrated that SJ 5 needling in the healthy upper limb resulted in specific directional brain action, as manifested by deactivation of cerebral areas related to motor (Broadmann 4 and 6), emotion (hypothalamus), and cognition (Broadmann 24, 32).
基金supported by the National 973 Program of China,No.2006CB504505the National Natural Science Foundation of China,No.90709027
文摘The action of needling in acupoint therapy has to first be regulated and integrated by the brain, and then it affects the target organ and manifests its therapeutic effects, which is dependent on the specificity of the acupoints. The authors put forward the hypothesis of the "acupoint-related brain". Single-photon emission computed tomography was used to explore the activation of brain regions following true needling in true acupoint Waiguan (SJ 5), sham needling in true acupoint Waiguan, true needling in a sham point, and sham needling in a sham point. The relative specificity of Waiguan in normal persons was analyzed by observing changes in regional cerebral blood flow. Compared with the sham needling in true acupoint group and sham needling in the sham point group, acupuncture at Waiguan can activate brain regions controlling movement. Compared with true needling in the sham point group, acupuncture at Waiguan can also activate brain regions controlling movement. The results suggest that the specificity of needling at an acupoint is related to certain activated cerebral functional regions, which are associated with the clinical application of the acupoint.
文摘The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristics of the PCM clearly indicate that four states can be stored in this stacked film structure. Qualitative analysis indicates that the multiple-state storage capability of this stacked film structure is due to successive crystallizations in different Si-Sb-Te layers triggered by different amplitude currents.
基金the National Basic Research Program of China (973 program), No.2006CB504505the National Natural Science Foundation of China, No.90709027
文摘Functional brain imaging studies of the specificity of acupoint stimulation have revealed that needling at particular acupoints can induce activation of corresponding brain areas, examined in physiological and pathological states. The present study examined Waiguan (SJ 5) as the acupoint of interest. We tested five conditions: a true needling at true acupoint group, a sham needling at true acupoint group, a true needling at sham acupoint group, a sham needling at sham acupoint group, and a healthy control group. We examined changes in glucose metabolism in different functional cortical regions to determine the specific brain activation elicited by acupuncture at Waiguan. The results revealed that true and sham acupuncture at the same acupoint activated different brain regions. In addition, applying acupuncture at a genuine acupoint and a neighboring sham acupoint activated different brain regions. These findings suggest that acupuncture at Waiguan causes activation in some brain regions.