期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhancing Sentiment Analysis on Twitter Using Community Detection 被引量:3
1
作者 William Deitrick Benjamin Valyou +2 位作者 Wes Jones Joshua Timian Wei Hu 《Communications and Network》 2013年第3期192-197,共6页
The increasing popularity of social media in recent years has created new opportunities to study the interactions of different groups of people. Never before have so many data about such a large number of individuals ... The increasing popularity of social media in recent years has created new opportunities to study the interactions of different groups of people. Never before have so many data about such a large number of individuals been readily available for analysis. Two popular topics in the study of social networks are community detection and sentiment analysis. Community detection seeks to find groups of associated individuals within networks, and sentiment analysis attempts to determine how individuals are feeling. While these are generally treated as separate issues, this study takes an integrative approach and uses community detection output to enable community-level sentiment analysis. Community detection is performed using the Walktrap algorithm on a network of Twitter users associated with Microsoft Corporation’s @technet account. This Twitter account is one of several used by Microsoft Corporation primarily for communicating with information technology professionals. Once community detection is finished, sentiment in the tweets produced by each of the communities detected in this network is analyzed based on word sentiment scores from the well-known SentiWordNet lexicon. The combination of sentiment analysis with community detection permits multilevel exploration of sentiment information within the @technet network, and demonstrates the power of combining these two techniques. 展开更多
关键词 COMMUNITY Detection TWITTER SOCIAL NETWORKS SENTIMENT Analysis SentiWordNet walktrap
下载PDF
新冠疫情科研合作网络的动态演化及其影响因素探析
2
作者 李从欣 张旭 《河北科技大学学报(社会科学版)》 2022年第4期69-78,共10页
基于WALKTRAP随机游走算法对科研合作网络进行社区划分,时间上通过建立时间指数随机图模型探究合作网络演化和动态演变影响机制,空间上通过建立空间误差模型探究国家科研合作的影响因素,研究结果显示:科研合作产出的重要社区主要围绕新... 基于WALKTRAP随机游走算法对科研合作网络进行社区划分,时间上通过建立时间指数随机图模型探究合作网络演化和动态演变影响机制,空间上通过建立空间误差模型探究国家科研合作的影响因素,研究结果显示:科研合作产出的重要社区主要围绕新冠疫情死亡因素、急性呼吸窘迫综合征、通风以及新冠疫情的治疗效果等展开研究;结构上,该社区呈不断发散的、稳进式增长的良性结构,但缺乏创新性和消融性;网络形态上,该社区从高稀疏的多维群集向高聚集的单一群集演变并伴随“小世界”网络特征;国家的科研合作关系具有空间溢出效应,科研产出水平、邻近国家的合作数量、隶属于同一机构作者及其学术成就对国家的科研合作关系均有显著正向影响。 展开更多
关键词 新冠疫情 科研合作网络 动态社区发现 walktrap随机游走算法 时间指数随机图模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部