A metallurgical forensic investigation was conducted to determine the cause of a failed superheater tube. Analysis techniques by Visual Examination, Energy Dispersive X-ray Analysis, Mechanical Testing and Metallograp...A metallurgical forensic investigation was conducted to determine the cause of a failed superheater tube. Analysis techniques by Visual Examination, Energy Dispersive X-ray Analysis, Mechanical Testing and Metallographic Investigation were conducted, together with a comparative study from an inlet elbow section that did not fail. The superheater tube suffered premature failure after being in service for about two years. It was concluded that the failed tube underwent overheating, corrosion-erosion, embrittlement, and eventual failure under its internal pressure by stress rupture. The analysis revealed intergranular cracks, window fracture features and spheroidization of pearlite with grain growth. A possible contribution to embrittlement was from copper. Follow-ups and recommendations were provided, as well as covering materials, inspection, and operational considerations.展开更多
Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion...Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion was dependent on temperature and was greatly accelerated by ash deposition.The mass gain was distinctly reduced in the presence of SO2 with and without ash deposition on the specimens.Corrosion rates with ash deposit at different temperatures were calculated.Two feasible methods were provided to avoid serious high-temperature corrosion in the biomass boiler.展开更多
After research on a 2000t/h subcritical forced-circulation balanced ventilation were applied boiler and the structure and operation of its auxiliary system builds up this heat transfer model of a superheater's pip...After research on a 2000t/h subcritical forced-circulation balanced ventilation were applied boiler and the structure and operation of its auxiliary system builds up this heat transfer model of a superheater's pipe wall and analyze the effect of primary factors on the overtemperature of the pipe wall. Fault tree structure was used to uncover the multiplayer logic between the overtemperature of the superheater's pipe wall and the faults.展开更多
The mechanical stress distribution and the stress concentrations of the superheater outlet header of a 600MW supercritical boiler were analyzed by the finite element method. The results showed that the stress concentr...The mechanical stress distribution and the stress concentrations of the superheater outlet header of a 600MW supercritical boiler were analyzed by the finite element method. The results showed that the stress concentrated at the inside conjunction area between the pipe and the header cylinder , and the value of the maximum mechanical stress concentration factor is 2.51.展开更多
Superheater tubes temperature control is a necessity for long lifetime, high efficiency and high load following capability in boiler. This study reports a new approach for the control strategy design of boilers with s...Superheater tubes temperature control is a necessity for long lifetime, high efficiency and high load following capability in boiler. This study reports a new approach for the control strategy design of boilers with special shields. The presented control strategy is developed based on radiation thermal shields with low emissivity coefficient and high reflectivity or scattering coefficient. In order to simulate the combustion event in boiler and heat transfer to superheater tubes, an effective set of computational fluid dynamic (CFD) codes is used. Results indicate a successful identification of over- heated zones on platen superheater tubes and effect of radiation shields for solving this problem.展开更多
Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat ...Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat on structural uniformity as well as average porosity, pore morphology of porous metals was studied. The experimental results show that, when the superheat is higher than a critical value (ΔTc), the bubbling or boiling phenomenon will occur and the gas bubbles will form in the melt and float out of the melt. As a result, the final porosity will decrease. In addition, a higher superheat will simultaneously cause a non-uniform porous structure due to the pores coalescence and bubbling phenomenon. Finally, a theoretical model was developed to predict the critical superheat for the hydrogen to escape from the melt and the corresponding escapement ratio of hydrogen content. Considering the escapement of hydrogen, the predicted porosities are in good agreement with the experimental results.展开更多
The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were inve...The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.展开更多
The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making proc...The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making process were investigated. The results indicate that the semi-solid slurry to satisfy rheocasting requirement can be made by a combination of low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power significantly affect the morphology and the size of primary α-Al, while there is no obvious effect of the stirring time on primary α-Al. Compared with the samples made by low superheat pouring without stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 Al alloy are markedly improved by a process of applying both low superheat pouring and weak electromagnetic stirring. Under the condition of weak electromagnetic stirring applied, the pouring temperature with low superheat can be equivalently to reach the effectiveness obtained from the even lower pouring temperature without stirring.展开更多
The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the gr...The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining.展开更多
Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in diff...Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in different superheated melts. The results indicate that the grain refining effect of a given pulse electric field holds an optimal temperature range, moreover, a lower or higher superheated temperature will both disadvantage the improvements of casting structure. It essentially lies in the cooperative action between the distorted absorption of clusters and the activated capability of atoms in the aluminum melt.展开更多
The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo...The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃ When the round billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.展开更多
5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under elec...5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 ℃. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.展开更多
The specific heat of superheated Al 10Sr melts was determined at different heating rates between 1 K/min and 20 K/min using a differential scanning calorimeter(DSC). As a whole, the specific heat increases with increa...The specific heat of superheated Al 10Sr melts was determined at different heating rates between 1 K/min and 20 K/min using a differential scanning calorimeter(DSC). As a whole, the specific heat increases with increasing temperature. A hump is observed on the specific heat curve at the temperature corresponding to the phase boundary temperature dependent on heating rate. Moreover, the hump shifts to higher temperature in the measured temperature range from about 840 ℃ to 890 ℃ with increasing heating rate. At certain temperature in the higher superheated zone, the specific heat of the melt as a function of temperature shows a sharp rise . The result indicates that disorder zone fraction begins to increase while atom clusters fraction decreases at the breaking temperature. [展开更多
The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were pou...The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were poured at 20°C above their liquidus temperatures which provided the formation of equiaxed grains instead of dendritic growth.Produced billets were reheated for varied time from 20 to 80 min and thixoforged with 50%deformation rate.After thixoforging process,the samples were T6 heat treated for both A356 and A380 alloys.The microstructural evaluation and hardness alteration of thixoforged,solution treated and aged specimens were examined comparatively by using optical microscopy,scanning electron microscopy with energy-dispersive X-ray spectroscopy and Brinell hardness equipment.T6 heat treatment provided relatively uniform microstructure with newly formed precipitates that are Mg2Si and Al2Cu for A356 and A380 billets,respectively.Accordingly,hardness after artificial aging was increased considerably and reached HB 93 for A356 and HB 120 for A380 alloys.展开更多
To control the morphology and size of the primary and eutectic Mg2Si phases in in situ Mg2Si/Al-Si composite and achieve a feasible and reliable technique to produce appropriate feedstock for the thixo-casting and rhe...To control the morphology and size of the primary and eutectic Mg2Si phases in in situ Mg2Si/Al-Si composite and achieve a feasible and reliable technique to produce appropriate feedstock for the thixo-casting and rheo-casting of this type of material, three AI-Si matrix composites reinforced by 5wt.%, 9wt.% and 17wt.% Mg2Si with hypoeutectic, eutectic and hypereutectic compositions were prepared by the low superheat pouring (LSP) process. The effects of the pouring temperature (superheat) on the morphology and size distribution of primary phases (primary e-AI and Mg2Si), binary (a-AI + Mg2Si) eutectic cell and eutectic Mg2Si were investigated. The experimental results show that low pouring temperature (superheat) not only refines the grain structure of the primary e-AI and binary (e-AI + Mg2Si) eutectic cell in three composites and promotes the formation of more non- dendritic structural semi-solid metal (SSM) slurry of these phases; but also refines the primary and eutectic Mg2Si phases, which seems to be attributed to the creation of an ideal condition for the nucleation and the acquisition of a high survival of nuclei caused by the LSP process.展开更多
In close-coupled gas atomization(CCGA), the influences of melt superheat on breakup process are fundamental to obtain desired or finer powder. Based on a series of Cu atomization experiment under different superheatin...In close-coupled gas atomization(CCGA), the influences of melt superheat on breakup process are fundamental to obtain desired or finer powder. Based on a series of Cu atomization experiment under different superheating conditions, the influences of melt superheat on breakup process were studied. Experimental results indicate that as the melt superheat is increased to 150, 200, 250 and 300 K, the mean particle size (D50) decreases consequently to 34.9, 32.3, 30.9 and 19.7 μm. Theoretical analysis reveals that the primary breakup and secondary breakup processes are close coupled, and the melt superheat radically influences the melt properties, and plays a crucial role on governing the filming process of primary breakup and the atomization modes of secondary breakup. There exists a strong nonlinear decrease of contact angle of melt to nozzle orifice wall when the superheat is increased from 250 K to 300 K, leading to a marked fall of the film thickness formed in primary breakup, and D50 of copper powders is therefore sharply reduced. However, the log-normal distribution feature of particle size has not been substantially improved.展开更多
The effect of melt superheat on microstructure of Al4Fe2Mn1.5 Monel alloy made by vacuum melting method was studied. The results show that the alloy consists of dendritic γ matrix and γ′ phase, wherein γ′ phase h...The effect of melt superheat on microstructure of Al4Fe2Mn1.5 Monel alloy made by vacuum melting method was studied. The results show that the alloy consists of dendritic γ matrix and γ′ phase, wherein γ′ phase has two morphologies at different melt superheat. One is divorced eutectic γ′ which distributes in the interdendritic area, the other distributes dispersedly in single particle on the dendritic arm and exists in the petalform shape in the transition area between dendritic arm and interdendritic area. With the increase of superheat, the dendrite becomes finer, the primary dendritic arm is melted off and the secondary dendritic arm spacing decreases. The size of γ′ phase distributed on the dendritic arm becomes smaller and the divorced eutectic γ′ phase increases.展开更多
Taking GCr15 bearing steel as experiment material, the effects of suspension casting process and low superheat casting process on the solidification of ingot were studied comparehvely. The results show that both suspe...Taking GCr15 bearing steel as experiment material, the effects of suspension casting process and low superheat casting process on the solidification of ingot were studied comparehvely. The results show that both suspension casting process and low superheat casting process can improve the censeal segregation and crystal structure of ingot. As the acting mechanism is different between the two kinds of processes, it is found that suspension casting process is more effective than low superheat casting process in improving the quality of ingot.展开更多
文摘A metallurgical forensic investigation was conducted to determine the cause of a failed superheater tube. Analysis techniques by Visual Examination, Energy Dispersive X-ray Analysis, Mechanical Testing and Metallographic Investigation were conducted, together with a comparative study from an inlet elbow section that did not fail. The superheater tube suffered premature failure after being in service for about two years. It was concluded that the failed tube underwent overheating, corrosion-erosion, embrittlement, and eventual failure under its internal pressure by stress rupture. The analysis revealed intergranular cracks, window fracture features and spheroidization of pearlite with grain growth. A possible contribution to embrittlement was from copper. Follow-ups and recommendations were provided, as well as covering materials, inspection, and operational considerations.
文摘Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion was dependent on temperature and was greatly accelerated by ash deposition.The mass gain was distinctly reduced in the presence of SO2 with and without ash deposition on the specimens.Corrosion rates with ash deposit at different temperatures were calculated.Two feasible methods were provided to avoid serious high-temperature corrosion in the biomass boiler.
文摘After research on a 2000t/h subcritical forced-circulation balanced ventilation were applied boiler and the structure and operation of its auxiliary system builds up this heat transfer model of a superheater's pipe wall and analyze the effect of primary factors on the overtemperature of the pipe wall. Fault tree structure was used to uncover the multiplayer logic between the overtemperature of the superheater's pipe wall and the faults.
文摘The mechanical stress distribution and the stress concentrations of the superheater outlet header of a 600MW supercritical boiler were analyzed by the finite element method. The results showed that the stress concentrated at the inside conjunction area between the pipe and the header cylinder , and the value of the maximum mechanical stress concentration factor is 2.51.
文摘Superheater tubes temperature control is a necessity for long lifetime, high efficiency and high load following capability in boiler. This study reports a new approach for the control strategy design of boilers with special shields. The presented control strategy is developed based on radiation thermal shields with low emissivity coefficient and high reflectivity or scattering coefficient. In order to simulate the combustion event in boiler and heat transfer to superheater tubes, an effective set of computational fluid dynamic (CFD) codes is used. Results indicate a successful identification of over- heated zones on platen superheater tubes and effect of radiation shields for solving this problem.
基金Project(51271096)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0310)supported by the Program for New Century Excellent Talents in University,Ministry of Education,China
文摘Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat on structural uniformity as well as average porosity, pore morphology of porous metals was studied. The experimental results show that, when the superheat is higher than a critical value (ΔTc), the bubbling or boiling phenomenon will occur and the gas bubbles will form in the melt and float out of the melt. As a result, the final porosity will decrease. In addition, a higher superheat will simultaneously cause a non-uniform porous structure due to the pores coalescence and bubbling phenomenon. Finally, a theoretical model was developed to predict the critical superheat for the hydrogen to escape from the melt and the corresponding escapement ratio of hydrogen content. Considering the escapement of hydrogen, the predicted porosities are in good agreement with the experimental results.
基金The project was financially supported by the Hi-tech Research and Development Program of China (No. G2002AA336080) and the National Natural Science Foundation of China (No. 50374012)
文摘The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.
基金The paper is supported by the Hi-tech Research and Develop-ment Program of China (Authorized No.: G2002AA336080), andthe National Natural Science Foundation of China (AuthorizedNo.: 50374012).
文摘The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making process were investigated. The results indicate that the semi-solid slurry to satisfy rheocasting requirement can be made by a combination of low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power significantly affect the morphology and the size of primary α-Al, while there is no obvious effect of the stirring time on primary α-Al. Compared with the samples made by low superheat pouring without stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 Al alloy are markedly improved by a process of applying both low superheat pouring and weak electromagnetic stirring. Under the condition of weak electromagnetic stirring applied, the pouring temperature with low superheat can be equivalently to reach the effectiveness obtained from the even lower pouring temperature without stirring.
基金financially supported by National High Technical Research and Development Program of China(No.G2002AA336080)National Natural Science Foundation of China(No.50374012)Natural Science Foundation of Jiangxi Province(No.0650047).
文摘The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining.
基金This work was financially supported by the National Natural Science Foundation of China (No.50174028).
文摘Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in different superheated melts. The results indicate that the grain refining effect of a given pulse electric field holds an optimal temperature range, moreover, a lower or higher superheated temperature will both disadvantage the improvements of casting structure. It essentially lies in the cooperative action between the distorted absorption of clusters and the activated capability of atoms in the aluminum melt.
基金financially supported by the Science and Technology Innovation Foundation of Guangzhou Research Institute of Non-ferrous Metals(2009A10)the Guangdong Province Cooperation Project of Industry,Education and Academy(2012B090600051)
文摘The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃ When the round billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.
基金Project (2005CB623703) supported by the Major State Basic Research and Development Program of China
文摘5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 ℃. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.
文摘The specific heat of superheated Al 10Sr melts was determined at different heating rates between 1 K/min and 20 K/min using a differential scanning calorimeter(DSC). As a whole, the specific heat increases with increasing temperature. A hump is observed on the specific heat curve at the temperature corresponding to the phase boundary temperature dependent on heating rate. Moreover, the hump shifts to higher temperature in the measured temperature range from about 840 ℃ to 890 ℃ with increasing heating rate. At certain temperature in the higher superheated zone, the specific heat of the melt as a function of temperature shows a sharp rise . The result indicates that disorder zone fraction begins to increase while atom clusters fraction decreases at the breaking temperature. [
文摘The effects of T6 heat treatment on thixoforged A356 and A380 aluminium alloys were studied.Low superheat casting(LSC)technique was carried out to prepare proper specimens for thixoforging process.The samples were poured at 20°C above their liquidus temperatures which provided the formation of equiaxed grains instead of dendritic growth.Produced billets were reheated for varied time from 20 to 80 min and thixoforged with 50%deformation rate.After thixoforging process,the samples were T6 heat treated for both A356 and A380 alloys.The microstructural evaluation and hardness alteration of thixoforged,solution treated and aged specimens were examined comparatively by using optical microscopy,scanning electron microscopy with energy-dispersive X-ray spectroscopy and Brinell hardness equipment.T6 heat treatment provided relatively uniform microstructure with newly formed precipitates that are Mg2Si and Al2Cu for A356 and A380 billets,respectively.Accordingly,hardness after artificial aging was increased considerably and reached HB 93 for A356 and HB 120 for A380 alloys.
文摘To control the morphology and size of the primary and eutectic Mg2Si phases in in situ Mg2Si/Al-Si composite and achieve a feasible and reliable technique to produce appropriate feedstock for the thixo-casting and rheo-casting of this type of material, three AI-Si matrix composites reinforced by 5wt.%, 9wt.% and 17wt.% Mg2Si with hypoeutectic, eutectic and hypereutectic compositions were prepared by the low superheat pouring (LSP) process. The effects of the pouring temperature (superheat) on the morphology and size distribution of primary phases (primary e-AI and Mg2Si), binary (a-AI + Mg2Si) eutectic cell and eutectic Mg2Si were investigated. The experimental results show that low pouring temperature (superheat) not only refines the grain structure of the primary e-AI and binary (e-AI + Mg2Si) eutectic cell in three composites and promotes the formation of more non- dendritic structural semi-solid metal (SSM) slurry of these phases; but also refines the primary and eutectic Mg2Si phases, which seems to be attributed to the creation of an ideal condition for the nucleation and the acquisition of a high survival of nuclei caused by the LSP process.
基金Projects(10476043 50574103) supported by National Natural Science Foundation of China
文摘In close-coupled gas atomization(CCGA), the influences of melt superheat on breakup process are fundamental to obtain desired or finer powder. Based on a series of Cu atomization experiment under different superheating conditions, the influences of melt superheat on breakup process were studied. Experimental results indicate that as the melt superheat is increased to 150, 200, 250 and 300 K, the mean particle size (D50) decreases consequently to 34.9, 32.3, 30.9 and 19.7 μm. Theoretical analysis reveals that the primary breakup and secondary breakup processes are close coupled, and the melt superheat radically influences the melt properties, and plays a crucial role on governing the filming process of primary breakup and the atomization modes of secondary breakup. There exists a strong nonlinear decrease of contact angle of melt to nozzle orifice wall when the superheat is increased from 250 K to 300 K, leading to a marked fall of the film thickness formed in primary breakup, and D50 of copper powders is therefore sharply reduced. However, the log-normal distribution feature of particle size has not been substantially improved.
文摘The effect of melt superheat on microstructure of Al4Fe2Mn1.5 Monel alloy made by vacuum melting method was studied. The results show that the alloy consists of dendritic γ matrix and γ′ phase, wherein γ′ phase has two morphologies at different melt superheat. One is divorced eutectic γ′ which distributes in the interdendritic area, the other distributes dispersedly in single particle on the dendritic arm and exists in the petalform shape in the transition area between dendritic arm and interdendritic area. With the increase of superheat, the dendrite becomes finer, the primary dendritic arm is melted off and the secondary dendritic arm spacing decreases. The size of γ′ phase distributed on the dendritic arm becomes smaller and the divorced eutectic γ′ phase increases.
文摘Taking GCr15 bearing steel as experiment material, the effects of suspension casting process and low superheat casting process on the solidification of ingot were studied comparehvely. The results show that both suspension casting process and low superheat casting process can improve the censeal segregation and crystal structure of ingot. As the acting mechanism is different between the two kinds of processes, it is found that suspension casting process is more effective than low superheat casting process in improving the quality of ingot.