Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract f...Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.展开更多
To investigate the feasibility and time window of early detection of Wallerian degeneration in the corticospinal tract after middle cerebral artery infarction, 23 patients were assessed using magnetic resonance diffus...To investigate the feasibility and time window of early detection of Wallerian degeneration in the corticospinal tract after middle cerebral artery infarction, 23 patients were assessed using magnetic resonance diffusion tensor imaging at 3.0T within 14 days after the infarction. The fractional anisotropy values of the affected corticospinal tract began to decrease at 3 days after onset and decreased in all cases at 7 days. The diffusion coefficient remained unchanged. Experimental findings indicate that diffusion tensor imaging can detect the changes associated with Wallerian degeneration of the corticospinal tract as early as 3 days after cerebral infarction.展开更多
Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration.Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration,p...Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration.Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration,possibly through promoting Schwann cell proliferation and phagocytosis and enhancing macrophage proliferation,migration,and phagocytosis.Because Schwann cells and macrophages are the main cells involved in Wallerian degeneration,we speculated that ascorbic acid may accelerate this degenerative process.To test this hypothesis,400 mg/kg ascorbic acid was administered intragastrically immediately after sciatic nerve transection,and 200 mg/kg ascorbic acid was then administered intragastrically every day.In addition,rat sciatic nerve explants were treated with 200μM ascorbic acid.Ascorbic acid significantly accelerated the degradation of myelin basic protein-positive myelin and neurofilament 200-positive axons in both the transected nerves and nerve explants.Furthermore,ascorbic acid inhibited myelin-associated glycoprotein expression,increased c-Jun expression in Schwann cells,and increased both the number of macrophages and the amount of myelin fragments in the macrophages.These findings suggest that ascorbic acid accelerates Wallerian degeneration by accelerating the degeneration of axons and myelin in the injured nerve,promoting the dedifferentiation of Schwann cells,and enhancing macrophage recruitment and phagocytosis.The study was approved by the Southern Medical University Animal Care and Use Committee(approval No.SMU-L2015081)on October 15,2015.展开更多
Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly...Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt anal ERK1/2 patl^ways, l^urther studies reve^ed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.展开更多
Wallerian degeneration is a subject of major interest in neuroscience. A large number of genes are differentially regulated during the distinct stages of Wallerian degeneration: transcription factor activation, immun...Wallerian degeneration is a subject of major interest in neuroscience. A large number of genes are differentially regulated during the distinct stages of Wallerian degeneration: transcription factor activation, immune response, myelin cell differentiation and dedifferentiation. Although gene expression responses in the distal segment of the sciatic nerve after peripheral nerve injury are known, differences in gene expression between the proximal and distal segments remain unclear. In the present study in rats, we used microarrays to analyze changes in gene expression, biological processes and signaling pathways in the proximal and distal segments of sciatic nerves under- going Wallerian degeneration. More than 6,000 genes were differentially expressed and 20 types of expression tendencies were identified, mainly between proximal and distal segments at 7-14 days after injury. The differentially expressed genes were those involved in cell differentiation, cytokinesis, neuron differentiation, nerve development and axon regeneration. Furthermore, 11 biological processes were represented, related to responses to stimuli, cell apoptosis, inflammato- ry response, immune response, signal transduction, protein kinase activity, and cell proliferation. Using real-time quantitative PCR, western blot analysis and immunohistochemistry, microarray data were verified for four genes: aquaporin-4, interleukin 1 receptor-like 1, matrix metallopro- teinase-12 and periaxin. Our study identifies differential gene expression in the proximal and distal segments of a nerve during Wallerian degeneration, analyzes dynamic biological changes of these genes, and provides a useful platform for the detailed study of nerve injury and repair during Wallerian degeneration.展开更多
Wallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early respons...Wallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early response. In this study, we analyzed gene expression in early Wallerian degeneration of the distal nerve stump at 0, 0.5, 1,6, 12 and 24 hours after rat sciatic nerve injury using gene chip microarrays. We screened for differentially-expressed genes and gene expression patterns. We examined the data for Gene Ontology, and explored the Kyoto EncycLopedia of Genes and Genomes Pathway. This allowed us to identify key regulatory factors and recurrent network motifs. We identified 1 546 differentially-expressed genes and 21 distinct patterns ofgene expression in early Wallerian degeneration, and an enrichment of genes associated with the immune response, acute inflammation, apoptosis, cell adhesion, ion transport and the extracellular matrix. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed components involved in the Jak-STAT, ErbB, transforming growth factor-13, T cell receptor and calcium signaling pathways. Key factors included interleukin-6, interleukin-1, integrin, c-sarcoma, carcinoembryonic antigen-related cell adhesion molecules, chemokine (C-C motif) ligand, matrix metalloproteinase, BH3 interacting domain death agonist, baculoviral lAP repeat-containing 3 and Rac. The data were validated with real-time quantitative PCR. This study provides a global view of gene expression profiles in eady Wallerian degeneration of the rat sciatic nerve. Our findings provide insight into the molecular mechanisms underlying early Wallerian degeneration, and the regulation of nerve degeneration and regeneration.展开更多
Although neuroimaging is commonly utilized to study Wallerian degeneration, it cannot display Wallerian degeneration early after brain injury. In the present study, we attempted to examine pathologically the process o...Although neuroimaging is commonly utilized to study Wallerian degeneration, it cannot display Wallerian degeneration early after brain injury. In the present study, we attempted to examine pathologically the process of Wallerian degeneration early after brain injury. Cerebral peduncle demyelination was observed at 3 weeks post brain ischemia, followed by demyelination in the cervical enlargement at 6 weeks. Anterograde tracing of the corticospinal tract with biotinylated dextran amine showed that following serious neurologic deficit, the tracing of the corticospinal tract of the intemal capsule, cerebral peduncle, and cervical enlargement indicated serious Wallerian degeneration.展开更多
Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore,investigating how axon regeneration and degeneration work together to repair perip...Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore,investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the molecular mechanisms and signal cascades underlying peripheral nerve repair and provide potential strategies for improving the low axon regeneration capacity of the central nervous system.In this study,we applied weighted gene co-expression network analysis to identify differentially expressed genes in proximal and distal sciatic nerve segments from rats with sciatic nerve injury.We identified 31 and 15 co-expression modules from the proximal and distal sciatic nerve segments,respectively.Functional enrichment analysis revealed that the differentially expressed genes in proximal modules promoted regeneration,while the differentially expressed genes in distal modules promoted neurodegeneration.Next,we constructed hub gene networks for selected modules and identified a key hub gene,Kif22,which was up-regulated in both nerve segments.In vitro experiments confirmed that Kif22 knockdown inhibited proliferation and migration of Schwann cells by modulating the activity of the extracellular signal-regulated kinase signaling pathway.Collectively,our findings provide a comparative framework of gene modules that are co-expressed in injured proximal and distal sciatic nerve segments,and identify Kif22 as a potential therapeutic target for promoting peripheral nerve injury repair via Schwann cell proliferation and migration.All animal experiments were approved by the Institutional Animal Ethics Committee of Nantong University,China(approval No.S20210322-008)on March 22,2021.展开更多
Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cy...Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cytoskeletal reconstruction.However,it is unclear whether microtubule dynamics play a role in this process.To address this,we treated cultured sciatic nerve explants,an in vitro model of Wallerian degeneration,with the microtubule-targeting agents paclitaxel and nocodazole.We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation,whereas nocodazole-induced microtubule destabilization inhibited these processes.Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration,as well as functional recovery of nerve conduction and target muscle and motor behavior,respectively.These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration.This study was approved by the Animal Care and Use Committee of Southern Medical University,China(approval No.SMUL2015081) on October 15,2015.展开更多
Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Walleria...Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Wallerian degeneration of the peripheral nervous system.However,Wallerian degeneration regulating nerve injury and repair remains largely unknown,especially the early response.We have previously reported some key regulators of Wallerian degeneration after sciatic nerve injury.Baculoviral inhibitor of apoptosis protein repeat-containing protein 3(BIRC3)is an important factor that regulates apoptosis-inhibiting protein.In this study,we established rat models of right sciatic nerve injury.In vitro Schwann cell models were also established and subjected to gene transfection to inhibit and overexpress BIRC3.The data indicated that BIRC3 expression was significantly up-regulated after sciatic nerve injury.Both BIRC3 upregulation and downregulation affected the migration,proliferation and apoptosis of Schwan cells and affected the expression of related factors through activating c-fos and ERK signal pathway.Inhibition of BIRC3 delayed early Wallerian degeneration through inhibiting the apoptosis of Schwann cells after sciatic nerve injury.These findings suggest that BIRC3 plays an important role in peripheral nerve injury repair and regeneration.The study was approved by the Institutional Animal Care and Use Committee of Nantong University,China(approval No.2019-nsfc004)on March 1,2019.展开更多
Objective:Wallerian degeneration is a pathological process closely related to peripheral nerve regeneration following injury,and includes the disintegration and phagocytosis of peripheral nervous system cells.Traditio...Objective:Wallerian degeneration is a pathological process closely related to peripheral nerve regeneration following injury,and includes the disintegration and phagocytosis of peripheral nervous system cells.Traditionally,morphological changes are observed by performing immunofluorescence staining after sectioning,which results in the loss of some histological information.The purpose of this study was to explore a new,nondestmetive,and systematic method for observing axonal histological changes during Wallerian degeneration.Methods:Thirty male Thy1-YFP-16 mice(SPF grade,6 weeks old,20±5 g)were randomly selected and divided into clear,unobstructed brain imaging cocktails and computational analysis(CUBIC)optical clearing(n=15)and traditional method groups(n=15).Five mice in each group were sacrificed at 1st,3rd,and 5th day following a crush operation.The histological axon changes were observed by CUBIC light optical clearing treatment,direct tissue section imaging,and HE staining.Results:The results revealed that,compared with traditional imaging methods,there was no physical damage to the samples,which allowed for three-dimensional and deep-seated tissue imaging through CUBIC.Local image information could be nicely obtained by direct fluorescence imaging and HE staining,but it was difficult to obtain image information of the entire sample.At the same time,the image information obtained by fluorescence imaging and HE staining was partially lost.Conclusion:The combining of CUBIC and Thy1-YFP transgenic mice allowed for a clear and comprehensive observation of histological changes of axons in Wallerian degeneration.展开更多
Some biological uses of polyethylene glycol(PEG):The use of PEG as a membrane fusogen was first reported in 1976with the creation of cell hybrids,formed by suspending two cell lines in a 50%w/w solution of PEG in w...Some biological uses of polyethylene glycol(PEG):The use of PEG as a membrane fusogen was first reported in 1976with the creation of cell hybrids,formed by suspending two cell lines in a 50%w/w solution of PEG in water.展开更多
Wallerian degeneration (WD) remains an important research topic. Many genes are differentially expressed during the process of WD, but the precise mechanisms responsible for these differentiations are not completely...Wallerian degeneration (WD) remains an important research topic. Many genes are differentially expressed during the process of WD, but the precise mechanisms responsible for these differentiations are not completely understood. In this study, we used microarrays to analyze the expression changes of the distal nerve stump at 0, 1, 4, 7, 14, 21 and 28 days after sciatic nerve injury in rats. The data revealed 6 076 differentiatly-expressed genes, with 23 types of expression, specifically enriched in genes associated with nerve development and axonogenesis, cytokine biosynthesis, cell differentiation, cytokine/chemokine production, neuron differentiation, cytokinesis, phosphorylation and axon regeneration. Kyoto Encyclopedia of Genes and Genomes pathway analysis gave findings related mainly to the MAPK signaling pathway, the Jak-STAT signaling pathway, the cell cycle, cytokine-cytokine receptor interaction, the p53 signaling pathway and the Wnt signaling pathway. Some key factors were NGF, MAG, CNTF, CTNNA2, p53, JAK2, PLCB1, STAT3, BDNF, PRKC, collagen II, FGF, THBS4, TNC and c-Src, which were further validated by real-time quantitative PCR, Western blot, and immunohistochemistry. Our findings contribute to a better understanding of the functional analysis of differentially-expressed genes in WD and may shed light on the molecular mechanisms of nerve degeneration and regeneration.展开更多
Purpose:Wallerian degeneration(WD)is an antegrade degenerative process distal to peripheral nerve injury.Numerous genes are differentially regulated in response to the process.However,the underlying mechanism is uncle...Purpose:Wallerian degeneration(WD)is an antegrade degenerative process distal to peripheral nerve injury.Numerous genes are differentially regulated in response to the process.However,the underlying mechanism is unclear,especially the early response.We aimed at investigating the effects of sciatic nerve injury on WD via CLDN 14/15 interactionsin vivo andin vitro.Methods:Using the methods of molecular biology and bioinformatics analysis,we investigated the molecular mechanism by which claudin 14/15 participate in WD.Our previous study showed that claudins 14 and 15 trigger the early signal flow and pathway in damaged sciatic nerves.Here,we report the effects of the interaction between claudin 14 and claudin 15 on nerve degeneration and regeneration during early WD.Results:It was found that claudin 14/15 were upregulated in the sciatic nerve in WD.Claudin 14/15 promoted Schwann cell proliferation,migration and anti-apoptosisin vitro.PKCα,NT3,NF2,and bFGF were significantly upregulated in transfected Schwann cells.Moreover,the expression levels of theβ-catenin,p-AKT/AKT,p-c-jun/c-jun,and p-ERK/ERK signaling pathways were also significantly altered.Conclusion:Claudin 14/15 affect Schwann cell proliferation,migration,and anti-apoptosis via theβ-catenin,p-AKT/AKT,p-c-jun/c-jun,and p-ERK/ERK pathwaysin vitro andin vivo.The results of this study may help elucidate the molecular mechanisms of the tight junction signaling pathway underlying peripheral nerve degeneration.展开更多
Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripher...Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.展开更多
Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Walle...Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.展开更多
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat...Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.展开更多
Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is W...Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent 昀ndings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.展开更多
Two of the most common neurodegenerative disorders-Alzheimer’s and Parkinson’s diseases-are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation...Two of the most common neurodegenerative disorders-Alzheimer’s and Parkinson’s diseases-are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation.The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer’s disease pathology.The major hallmark of Parkinson’s disease is the loss of dopaminergic neurons in the substantia nigra pars compacta,following the formation of Lewy bodies,which consists primarily of alpha-synuclein aggregates.However,the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood.Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders.Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients.While some publications provide significant findings related to axonal regeneration in Alzheimer’s and Parkinson’s diseases,they also highlight the limitations and obstacles to the development of neuroregenerative therapies.In this review,we summarize in vitro and in vivo findings related to neurogenesis,neuroregeneration and neurodegeneration in the context of Alzheimer’s and Parkinson’s diseases.展开更多
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
基金supported by the National Natural Science Foundation of China,Nos.31 730030 (to XL),81941011 (to XL),31 771053 (to HD),82271403 (to XL),82272171 (to ZY),31971279 (to ZY)82201542 (to FH)+1 种基金the Natural Science Foundation of Beijing,No.7222004 (to HD)the Science and Technology Program of Beijing,No.Z181100001818007(to ZY)
文摘Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.
基金supported by the National Stroke Rehabilitation Research Foundation of the Ministry of Health, China,No.01BA703B18bthe Young and Middle-Aged Clinical Scientists Research Foundation of Shanghai Government,No.01YZK
文摘To investigate the feasibility and time window of early detection of Wallerian degeneration in the corticospinal tract after middle cerebral artery infarction, 23 patients were assessed using magnetic resonance diffusion tensor imaging at 3.0T within 14 days after the infarction. The fractional anisotropy values of the affected corticospinal tract began to decrease at 3 days after onset and decreased in all cases at 7 days. The diffusion coefficient remained unchanged. Experimental findings indicate that diffusion tensor imaging can detect the changes associated with Wallerian degeneration of the corticospinal tract as early as 3 days after cerebral infarction.
基金supported by the National Natural Science Foundation of China,Nos.81870982&81571182the Program for Changjiang Scholars and Innovative Research Team in Universities of China,No.IRT-16R37+4 种基金the National Key Basic Research Program of China,No.2014CB542202the Science and Technology Project of Guangdong Province of China,No.2015A020212024Key Research&Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR110104008the Natural Science Foundation of Guangdong Province of China,No.2017A030312009Research Grant of Guangdong Province Key Laboratory of Psychiatric Disorders of China,No.N201904(all to JG).
文摘Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration.Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration,possibly through promoting Schwann cell proliferation and phagocytosis and enhancing macrophage proliferation,migration,and phagocytosis.Because Schwann cells and macrophages are the main cells involved in Wallerian degeneration,we speculated that ascorbic acid may accelerate this degenerative process.To test this hypothesis,400 mg/kg ascorbic acid was administered intragastrically immediately after sciatic nerve transection,and 200 mg/kg ascorbic acid was then administered intragastrically every day.In addition,rat sciatic nerve explants were treated with 200μM ascorbic acid.Ascorbic acid significantly accelerated the degradation of myelin basic protein-positive myelin and neurofilament 200-positive axons in both the transected nerves and nerve explants.Furthermore,ascorbic acid inhibited myelin-associated glycoprotein expression,increased c-Jun expression in Schwann cells,and increased both the number of macrophages and the amount of myelin fragments in the macrophages.These findings suggest that ascorbic acid accelerates Wallerian degeneration by accelerating the degeneration of axons and myelin in the injured nerve,promoting the dedifferentiation of Schwann cells,and enhancing macrophage recruitment and phagocytosis.The study was approved by the Southern Medical University Animal Care and Use Committee(approval No.SMU-L2015081)on October 15,2015.
基金supported by grants from the National Natural Science Foundation of China,Grant No.81370982,31170946Key Program,Grant No.81130080+1 种基金the Scientific Research Foundation for Returned Scholars,Ministry of Education of Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt anal ERK1/2 patl^ways, l^urther studies reve^ed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.
基金supported by the National Natural Science Foundation of China,No.81370982,31170946Key Program,Grant No.81130080the Priority Academic Program Development of Jiangsu Higher Education Institutions in China
文摘Wallerian degeneration is a subject of major interest in neuroscience. A large number of genes are differentially regulated during the distinct stages of Wallerian degeneration: transcription factor activation, immune response, myelin cell differentiation and dedifferentiation. Although gene expression responses in the distal segment of the sciatic nerve after peripheral nerve injury are known, differences in gene expression between the proximal and distal segments remain unclear. In the present study in rats, we used microarrays to analyze changes in gene expression, biological processes and signaling pathways in the proximal and distal segments of sciatic nerves under- going Wallerian degeneration. More than 6,000 genes were differentially expressed and 20 types of expression tendencies were identified, mainly between proximal and distal segments at 7-14 days after injury. The differentially expressed genes were those involved in cell differentiation, cytokinesis, neuron differentiation, nerve development and axon regeneration. Furthermore, 11 biological processes were represented, related to responses to stimuli, cell apoptosis, inflammato- ry response, immune response, signal transduction, protein kinase activity, and cell proliferation. Using real-time quantitative PCR, western blot analysis and immunohistochemistry, microarray data were verified for four genes: aquaporin-4, interleukin 1 receptor-like 1, matrix metallopro- teinase-12 and periaxin. Our study identifies differential gene expression in the proximal and distal segments of a nerve during Wallerian degeneration, analyzes dynamic biological changes of these genes, and provides a useful platform for the detailed study of nerve injury and repair during Wallerian degeneration.
基金supported by the National Natural Science Foundation of China (Key Program),No. 81130080the National Natural Science Foundation of China,No. 30870811+2 种基金Scientific Research Foundation for Returned Scholars,Ministry of Education of Chinathe Natural Science Foundation of Jiangsu Province,No. BK2010282A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,PAPD
文摘Wallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early response. In this study, we analyzed gene expression in early Wallerian degeneration of the distal nerve stump at 0, 0.5, 1,6, 12 and 24 hours after rat sciatic nerve injury using gene chip microarrays. We screened for differentially-expressed genes and gene expression patterns. We examined the data for Gene Ontology, and explored the Kyoto EncycLopedia of Genes and Genomes Pathway. This allowed us to identify key regulatory factors and recurrent network motifs. We identified 1 546 differentially-expressed genes and 21 distinct patterns ofgene expression in early Wallerian degeneration, and an enrichment of genes associated with the immune response, acute inflammation, apoptosis, cell adhesion, ion transport and the extracellular matrix. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed components involved in the Jak-STAT, ErbB, transforming growth factor-13, T cell receptor and calcium signaling pathways. Key factors included interleukin-6, interleukin-1, integrin, c-sarcoma, carcinoembryonic antigen-related cell adhesion molecules, chemokine (C-C motif) ligand, matrix metalloproteinase, BH3 interacting domain death agonist, baculoviral lAP repeat-containing 3 and Rac. The data were validated with real-time quantitative PCR. This study provides a global view of gene expression profiles in eady Wallerian degeneration of the rat sciatic nerve. Our findings provide insight into the molecular mechanisms underlying early Wallerian degeneration, and the regulation of nerve degeneration and regeneration.
文摘Although neuroimaging is commonly utilized to study Wallerian degeneration, it cannot display Wallerian degeneration early after brain injury. In the present study, we attempted to examine pathologically the process of Wallerian degeneration early after brain injury. Cerebral peduncle demyelination was observed at 3 weeks post brain ischemia, followed by demyelination in the cervical enlargement at 6 weeks. Anterograde tracing of the corticospinal tract with biotinylated dextran amine showed that following serious neurologic deficit, the tracing of the corticospinal tract of the intemal capsule, cerebral peduncle, and cervical enlargement indicated serious Wallerian degeneration.
基金supported by the National Major Project of Research and Development of China,No.2017YFA0104701(to BY)the National Natural Science Foundation of China,No.32000725(to QQC)+1 种基金the Natural Science Foundation of Jiangsu Province of China,No.BK20200973(to QQC)the Jiangsu Provincial University Innovation Training Key Project of China,No.202010304021Z(to ML)。
文摘Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore,investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the molecular mechanisms and signal cascades underlying peripheral nerve repair and provide potential strategies for improving the low axon regeneration capacity of the central nervous system.In this study,we applied weighted gene co-expression network analysis to identify differentially expressed genes in proximal and distal sciatic nerve segments from rats with sciatic nerve injury.We identified 31 and 15 co-expression modules from the proximal and distal sciatic nerve segments,respectively.Functional enrichment analysis revealed that the differentially expressed genes in proximal modules promoted regeneration,while the differentially expressed genes in distal modules promoted neurodegeneration.Next,we constructed hub gene networks for selected modules and identified a key hub gene,Kif22,which was up-regulated in both nerve segments.In vitro experiments confirmed that Kif22 knockdown inhibited proliferation and migration of Schwann cells by modulating the activity of the extracellular signal-regulated kinase signaling pathway.Collectively,our findings provide a comparative framework of gene modules that are co-expressed in injured proximal and distal sciatic nerve segments,and identify Kif22 as a potential therapeutic target for promoting peripheral nerve injury repair via Schwann cell proliferation and migration.All animal experiments were approved by the Institutional Animal Ethics Committee of Nantong University,China(approval No.S20210322-008)on March 22,2021.
基金supported by the National Natural Science Foundation of China,Nos.82071386 (to JS),81870982 (to JS)&81571182 (to JS)the National Key Basic Research Program of China,No.2014CB542202 (to JS)+3 种基金the Program for Changjiang Scholars and Innovative Research Team in University of China,No.IRT-16R37 (to JS)Key Research&Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR110104008 (to HZ)Research Grant of Guangdong Province Key Laboratory of Psychiatric Disorders of China,No.N201904 (to JS)Natural Science Foundation of Guangdong Province of China,No.2017A030312009 (to JS)。
文摘Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cytoskeletal reconstruction.However,it is unclear whether microtubule dynamics play a role in this process.To address this,we treated cultured sciatic nerve explants,an in vitro model of Wallerian degeneration,with the microtubule-targeting agents paclitaxel and nocodazole.We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation,whereas nocodazole-induced microtubule destabilization inhibited these processes.Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration,as well as functional recovery of nerve conduction and target muscle and motor behavior,respectively.These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration.This study was approved by the Animal Care and Use Committee of Southern Medical University,China(approval No.SMUL2015081) on October 15,2015.
基金supported by the National Natural Science Foundation of China,Nos.31971277,31950410551Scientific Research Foundation for Returned Scholars+2 种基金Ministry of Education of ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China,No.KYCX 19-2050(all to DBY)。
文摘Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Wallerian degeneration of the peripheral nervous system.However,Wallerian degeneration regulating nerve injury and repair remains largely unknown,especially the early response.We have previously reported some key regulators of Wallerian degeneration after sciatic nerve injury.Baculoviral inhibitor of apoptosis protein repeat-containing protein 3(BIRC3)is an important factor that regulates apoptosis-inhibiting protein.In this study,we established rat models of right sciatic nerve injury.In vitro Schwann cell models were also established and subjected to gene transfection to inhibit and overexpress BIRC3.The data indicated that BIRC3 expression was significantly up-regulated after sciatic nerve injury.Both BIRC3 upregulation and downregulation affected the migration,proliferation and apoptosis of Schwan cells and affected the expression of related factors through activating c-fos and ERK signal pathway.Inhibition of BIRC3 delayed early Wallerian degeneration through inhibiting the apoptosis of Schwann cells after sciatic nerve injury.These findings suggest that BIRC3 plays an important role in peripheral nerve injury repair and regeneration.The study was approved by the Institutional Animal Care and Use Committee of Nantong University,China(approval No.2019-nsfc004)on March 1,2019.
基金supported by grants from the National Key Research and Development Program of China(No.2016YFC1101604)the Fundamental Research Funds for the Central Universities+2 种基金Clinical Medicine Plus X-Young Scholars Project of Peking University China(No.PKU2020LCXQ020)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110983,No.2021A1515012586)Bethune Charitable Foundation and CSPC Osteoporosis Research Foundation Project(No.G-X-2020-1107-21).
文摘Objective:Wallerian degeneration is a pathological process closely related to peripheral nerve regeneration following injury,and includes the disintegration and phagocytosis of peripheral nervous system cells.Traditionally,morphological changes are observed by performing immunofluorescence staining after sectioning,which results in the loss of some histological information.The purpose of this study was to explore a new,nondestmetive,and systematic method for observing axonal histological changes during Wallerian degeneration.Methods:Thirty male Thy1-YFP-16 mice(SPF grade,6 weeks old,20±5 g)were randomly selected and divided into clear,unobstructed brain imaging cocktails and computational analysis(CUBIC)optical clearing(n=15)and traditional method groups(n=15).Five mice in each group were sacrificed at 1st,3rd,and 5th day following a crush operation.The histological axon changes were observed by CUBIC light optical clearing treatment,direct tissue section imaging,and HE staining.Results:The results revealed that,compared with traditional imaging methods,there was no physical damage to the samples,which allowed for three-dimensional and deep-seated tissue imaging through CUBIC.Local image information could be nicely obtained by direct fluorescence imaging and HE staining,but it was difficult to obtain image information of the entire sample.At the same time,the image information obtained by fluorescence imaging and HE staining was partially lost.Conclusion:The combining of CUBIC and Thy1-YFP transgenic mice allowed for a clear and comprehensive observation of histological changes of axons in Wallerian degeneration.
基金supported by grants from the Lone Star Paralysis Foundationan NIH grant R01 NS081063 to GDB
文摘Some biological uses of polyethylene glycol(PEG):The use of PEG as a membrane fusogen was first reported in 1976with the creation of cell hybrids,formed by suspending two cell lines in a 50%w/w solution of PEG in water.
基金supported by grants from the National Natural Science Foundation of China (81130080, 30870811)the Scientific Research Foundation for Returned Overseas Chinese Scholars, Ministry of Education of China+1 种基金the Natural Science Foundation of Jiangsu Province, China (BK2010282)the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China
文摘Wallerian degeneration (WD) remains an important research topic. Many genes are differentially expressed during the process of WD, but the precise mechanisms responsible for these differentiations are not completely understood. In this study, we used microarrays to analyze the expression changes of the distal nerve stump at 0, 1, 4, 7, 14, 21 and 28 days after sciatic nerve injury in rats. The data revealed 6 076 differentiatly-expressed genes, with 23 types of expression, specifically enriched in genes associated with nerve development and axonogenesis, cytokine biosynthesis, cell differentiation, cytokine/chemokine production, neuron differentiation, cytokinesis, phosphorylation and axon regeneration. Kyoto Encyclopedia of Genes and Genomes pathway analysis gave findings related mainly to the MAPK signaling pathway, the Jak-STAT signaling pathway, the cell cycle, cytokine-cytokine receptor interaction, the p53 signaling pathway and the Wnt signaling pathway. Some key factors were NGF, MAG, CNTF, CTNNA2, p53, JAK2, PLCB1, STAT3, BDNF, PRKC, collagen II, FGF, THBS4, TNC and c-Src, which were further validated by real-time quantitative PCR, Western blot, and immunohistochemistry. Our findings contribute to a better understanding of the functional analysis of differentially-expressed genes in WD and may shed light on the molecular mechanisms of nerve degeneration and regeneration.
基金supported by grants from the National Natural Science Foundation of China(No.31971277 and 31950410551)Scientific Research Foundation for Returned Scholars of the Ministry of Education of China,a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX 19-2050)。
文摘Purpose:Wallerian degeneration(WD)is an antegrade degenerative process distal to peripheral nerve injury.Numerous genes are differentially regulated in response to the process.However,the underlying mechanism is unclear,especially the early response.We aimed at investigating the effects of sciatic nerve injury on WD via CLDN 14/15 interactionsin vivo andin vitro.Methods:Using the methods of molecular biology and bioinformatics analysis,we investigated the molecular mechanism by which claudin 14/15 participate in WD.Our previous study showed that claudins 14 and 15 trigger the early signal flow and pathway in damaged sciatic nerves.Here,we report the effects of the interaction between claudin 14 and claudin 15 on nerve degeneration and regeneration during early WD.Results:It was found that claudin 14/15 were upregulated in the sciatic nerve in WD.Claudin 14/15 promoted Schwann cell proliferation,migration and anti-apoptosisin vitro.PKCα,NT3,NF2,and bFGF were significantly upregulated in transfected Schwann cells.Moreover,the expression levels of theβ-catenin,p-AKT/AKT,p-c-jun/c-jun,and p-ERK/ERK signaling pathways were also significantly altered.Conclusion:Claudin 14/15 affect Schwann cell proliferation,migration,and anti-apoptosis via theβ-catenin,p-AKT/AKT,p-c-jun/c-jun,and p-ERK/ERK pathwaysin vitro andin vivo.The results of this study may help elucidate the molecular mechanisms of the tight junction signaling pathway underlying peripheral nerve degeneration.
基金supported by grants from the Lone Star Paralysis Foundation,NIH R01NS081063Department of Defense award W81XWH-19-2-0054 to GDB+2 种基金supported by University of Wyoming Startup funds,Department of Defense grant W81XWH-17-1-0402the University of Wyoming Sensory Biology COBRE under National Institutes of Health(NIH)award number 5P20GM121310-02the National Institute of General Medical Sciences of the NIH under award number P20GM103432 to JSB。
文摘Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.
基金supported by DOD AFIRMⅢW81XWH-20-2-0029 subcontract,UT POC19-1774-13Neuraptive Therapeutics Inc.26-7724-56+1 种基金NIH R01-NS128086 grantsLone Star Paralysis gift(to GDB)。
文摘Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.
基金supported by the National Natural Science Foundation of China,Nos.82271411(to RG),51803072(to WLiu)grants from the Department of Finance of Jilin Province,Nos.2022SCZ25(to RG),2022SCZ10(to WLiu),2021SCZ07(to RG)+2 种基金Jilin Provincial Science and Technology Program,No.YDZJ202201ZYTS038(to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University,No.2022qnpy11(to WLuo)The Project of China-Japan Union Hospital of Jilin University,No.XHQMX20233(to RG)。
文摘Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
基金supported by Muscular Dystrophy Association grants#292306 and#236648Empire State Development Corporation for HJKRI Grants W753 and U446+1 种基金Hunter’s Hope FoundationUniversity at Buffalo IMPACT funding
文摘Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent 昀ndings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.
文摘Two of the most common neurodegenerative disorders-Alzheimer’s and Parkinson’s diseases-are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation.The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer’s disease pathology.The major hallmark of Parkinson’s disease is the loss of dopaminergic neurons in the substantia nigra pars compacta,following the formation of Lewy bodies,which consists primarily of alpha-synuclein aggregates.However,the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood.Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders.Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients.While some publications provide significant findings related to axonal regeneration in Alzheimer’s and Parkinson’s diseases,they also highlight the limitations and obstacles to the development of neuroregenerative therapies.In this review,we summarize in vitro and in vivo findings related to neurogenesis,neuroregeneration and neurodegeneration in the context of Alzheimer’s and Parkinson’s diseases.