期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
Neutrophil peptide 1 accelerates the clearance of degenerative axons during Wallerian degeneration by activating macrophages after peripheral nerve crush injury 被引量:3
1
作者 Yuhui Kou Yusong Yuan +3 位作者 Qicheng Li Wenyong Xie Hailin Xu Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1822-1827,共6页
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ... Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration. 展开更多
关键词 axonal debris inflammatory factors MACROPHAGES neutrophil peptide 1 peripheral nerve injury peripheral nerve regeneration RAW 264.7 cells sciatic nerve wallerian degeneration
下载PDF
Visualizing Wallerian degeneration in the corticospinal tract after sensorimotor cortex ischemia in mice 被引量:1
2
作者 Jiao Mu Liufang Hao +6 位作者 Zijue Wang Xuyang Fu Yusen Li Fei Hao Hongmei Duan Zhaoyang Yang Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期636-641,共6页
Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract f... Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration. 展开更多
关键词 corticospinal tract green fluorescent protein MICROGLIA spinal anterior horn cells stroke virus trace wallerian degeneration
下载PDF
Diffusion tensor imaging detects Wallerian degeneration of the corticospinal tract early after cerebral infarction 被引量:20
3
作者 Ruiman Xie Min Fang +5 位作者 Linjiang Zhou Shanghua Fan Jianying Liu Hongbo Quan Man Luo Dongying Qiu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第12期900-905,共6页
To investigate the feasibility and time window of early detection of Wallerian degeneration in the corticospinal tract after middle cerebral artery infarction, 23 patients were assessed using magnetic resonance diffus... To investigate the feasibility and time window of early detection of Wallerian degeneration in the corticospinal tract after middle cerebral artery infarction, 23 patients were assessed using magnetic resonance diffusion tensor imaging at 3.0T within 14 days after the infarction. The fractional anisotropy values of the affected corticospinal tract began to decrease at 3 days after onset and decreased in all cases at 7 days. The diffusion coefficient remained unchanged. Experimental findings indicate that diffusion tensor imaging can detect the changes associated with Wallerian degeneration of the corticospinal tract as early as 3 days after cerebral infarction. 展开更多
关键词 corticospinal tracts wallerian degeneration fractional anisotropy diffusion tensor imaging NEUROIMAGING neural regeneration
下载PDF
Gene expression profiling of the rat sciatic nerve in early Wallerian degeneration after injury 被引量:5
4
作者 Dengbing Yao Meiyuan Li +4 位作者 Dingding Shen Fei Ding Shibi Lu Qin Zhao Xiaosong Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第17期1285-1292,共8页
Wallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early respons... Wallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early response. In this study, we analyzed gene expression in early Wallerian degeneration of the distal nerve stump at 0, 0.5, 1,6, 12 and 24 hours after rat sciatic nerve injury using gene chip microarrays. We screened for differentially-expressed genes and gene expression patterns. We examined the data for Gene Ontology, and explored the Kyoto EncycLopedia of Genes and Genomes Pathway. This allowed us to identify key regulatory factors and recurrent network motifs. We identified 1 546 differentially-expressed genes and 21 distinct patterns ofgene expression in early Wallerian degeneration, and an enrichment of genes associated with the immune response, acute inflammation, apoptosis, cell adhesion, ion transport and the extracellular matrix. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed components involved in the Jak-STAT, ErbB, transforming growth factor-13, T cell receptor and calcium signaling pathways. Key factors included interleukin-6, interleukin-1, integrin, c-sarcoma, carcinoembryonic antigen-related cell adhesion molecules, chemokine (C-C motif) ligand, matrix metalloproteinase, BH3 interacting domain death agonist, baculoviral lAP repeat-containing 3 and Rac. The data were validated with real-time quantitative PCR. This study provides a global view of gene expression profiles in eady Wallerian degeneration of the rat sciatic nerve. Our findings provide insight into the molecular mechanisms underlying early Wallerian degeneration, and the regulation of nerve degeneration and regeneration. 展开更多
关键词 wallerian degeneration sciatic nerve microarrays expression profiling RATS neural regeneration
下载PDF
Pathological verification of corticospinal tract Wallerian degeneration in a rat model of brain ischemia 被引量:5
5
作者 Weijun Gong Tong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第13期1000-1004,共5页
Although neuroimaging is commonly utilized to study Wallerian degeneration, it cannot display Wallerian degeneration early after brain injury. In the present study, we attempted to examine pathologically the process o... Although neuroimaging is commonly utilized to study Wallerian degeneration, it cannot display Wallerian degeneration early after brain injury. In the present study, we attempted to examine pathologically the process of Wallerian degeneration early after brain injury. Cerebral peduncle demyelination was observed at 3 weeks post brain ischemia, followed by demyelination in the cervical enlargement at 6 weeks. Anterograde tracing of the corticospinal tract with biotinylated dextran amine showed that following serious neurologic deficit, the tracing of the corticospinal tract of the intemal capsule, cerebral peduncle, and cervical enlargement indicated serious Wallerian degeneration. 展开更多
关键词 brain ischemia corticospinal tract wallerian degeneration PATHOLOGY neural regeneration
下载PDF
The effects of claudin 14 during early Wallerian degeneration after sciatic nerve injury 被引量:7
6
作者 Leilei Gong Yun Zhu +4 位作者 Xi Xu Huaiqin Li Weimin Guo Qin Zhao Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2151-2158,共8页
Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly... Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt anal ERK1/2 patl^ways, l^urther studies reve^ed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration. 展开更多
关键词 nerve regeneration peripheral nerve injury wallerian degeneration sciatic nerve injury Claudin 14 rat Schwann cell Signal pathways C-JUN Akt ERK1/2 NSFC grant neural regeneration
下载PDF
Differential gene expression in proximal and distal nerve segments of rats with sciatic nerve injury during Wallerian degeneration 被引量:5
7
作者 Nan Jiang Huaiqin Li +4 位作者 Yi Sun Dexin Yin Qin Zhao Shusen Cui Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1186-1194,共9页
Wallerian degeneration is a subject of major interest in neuroscience. A large number of genes are differentially regulated during the distinct stages of Wallerian degeneration: transcription factor activation, immun... Wallerian degeneration is a subject of major interest in neuroscience. A large number of genes are differentially regulated during the distinct stages of Wallerian degeneration: transcription factor activation, immune response, myelin cell differentiation and dedifferentiation. Although gene expression responses in the distal segment of the sciatic nerve after peripheral nerve injury are known, differences in gene expression between the proximal and distal segments remain unclear. In the present study in rats, we used microarrays to analyze changes in gene expression, biological processes and signaling pathways in the proximal and distal segments of sciatic nerves under- going Wallerian degeneration. More than 6,000 genes were differentially expressed and 20 types of expression tendencies were identified, mainly between proximal and distal segments at 7-14 days after injury. The differentially expressed genes were those involved in cell differentiation, cytokinesis, neuron differentiation, nerve development and axon regeneration. Furthermore, 11 biological processes were represented, related to responses to stimuli, cell apoptosis, inflammato- ry response, immune response, signal transduction, protein kinase activity, and cell proliferation. Using real-time quantitative PCR, western blot analysis and immunohistochemistry, microarray data were verified for four genes: aquaporin-4, interleukin 1 receptor-like 1, matrix metallopro- teinase-12 and periaxin. Our study identifies differential gene expression in the proximal and distal segments of a nerve during Wallerian degeneration, analyzes dynamic biological changes of these genes, and provides a useful platform for the detailed study of nerve injury and repair during Wallerian degeneration. 展开更多
关键词 nerve regeneration peripheral nerve injury wallerian degeneration sciatic nerve injury MICROARRAY expression profiling biological process RAT NSFC grant neural regeneration
下载PDF
Differential gene and protein expression between rat tibial nerve and common peroneal nerve during wallerian degeneration 被引量:4
8
作者 Yao-Fa Lin Zheng Xie +2 位作者 Jun Zhou Gang Yin Hao-Dong Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第12期2183-2191,共9页
Wallerian degeneration and nerve regeneration after injury are complex processes involving many genes, proteins and cytokines. After different peripheral nerve injuries the regeneration rate can differ. Whether this i... Wallerian degeneration and nerve regeneration after injury are complex processes involving many genes, proteins and cytokines. After different peripheral nerve injuries the regeneration rate can differ. Whether this is caused by differential expression of genes and proteins during Wallerian degeneration remains unclear. The right tibial nerve and the common peroneal nerve of the same rat were exposed and completely cut through and then sutured in the same horizontal plane. On days 1, 7, 14, and 21 after surgery, 1–2 cm of nerve tissue distal to the suture site was dissected out from the tibial and common peroneal nerves. The differences in gene and protein expression during Wallerian degeneration of the injured nerves were then studied by RNA sequencing and proteomic techniques. In the tibial and common peroneal nerves, there were 1718, 1374, 1187, and 2195 differentially expressed genes, and 477, 447, 619, and 495 differentially expressed proteins on days 1, 7, 14, and 21 after surgery, respectively. Forty-seven pathways were activated during Wallerian degeneration. Three genes showing significant differential expression by RNA sequencing (Hoxd4, Lpcat4 and Tbx1) were assayed by real-time quantitative polymerase chain reaction. RNA sequencing and real-time quantitative polymerase chain reaction results were consistent. Our findings showed that expression of genes and proteins in injured tibial and the common peroneal nerves were significantly different during Wallerian degeneration at different time points. This suggests that the biological processes during Wallerian degeneration are different in different peripheral nerves after injury. The procedure was approved by the Animal Experimental Ethics Committee of the Second Military Medical University, China (approval No. CZ20160218) on February 18, 2016. 展开更多
关键词 NERVE REGENERATION PERIPHERAL NERVES PERIPHERAL NERVE injuries wallerian degeneration TIBIAL NERVE common PERONEAL NERVE RNA sequencing proteomic real-time quantitative polymerase chain reaction neural REGENERATION
下载PDF
Ascorbic acid accelerates Wallerian degeneration after peripheral nerve injury 被引量:7
9
作者 Lixia Li Yizhou Xu +5 位作者 Xianghai Wang Jingmin Liu Xiaofang Hu Dandan Tan Zhenlin Li Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第6期1078-1085,共8页
Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration.Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration,p... Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration.Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration,possibly through promoting Schwann cell proliferation and phagocytosis and enhancing macrophage proliferation,migration,and phagocytosis.Because Schwann cells and macrophages are the main cells involved in Wallerian degeneration,we speculated that ascorbic acid may accelerate this degenerative process.To test this hypothesis,400 mg/kg ascorbic acid was administered intragastrically immediately after sciatic nerve transection,and 200 mg/kg ascorbic acid was then administered intragastrically every day.In addition,rat sciatic nerve explants were treated with 200μM ascorbic acid.Ascorbic acid significantly accelerated the degradation of myelin basic protein-positive myelin and neurofilament 200-positive axons in both the transected nerves and nerve explants.Furthermore,ascorbic acid inhibited myelin-associated glycoprotein expression,increased c-Jun expression in Schwann cells,and increased both the number of macrophages and the amount of myelin fragments in the macrophages.These findings suggest that ascorbic acid accelerates Wallerian degeneration by accelerating the degeneration of axons and myelin in the injured nerve,promoting the dedifferentiation of Schwann cells,and enhancing macrophage recruitment and phagocytosis.The study was approved by the Southern Medical University Animal Care and Use Committee(approval No.SMU-L2015081)on October 15,2015. 展开更多
关键词 ascorbic acid AXON MACROPHAGE MYELIN peripheral nerve injury PHAGOCYTOSIS Schwann cell wallerian degeneration
下载PDF
Different protein expression patterns in rat spinal nerves during wallerian degeneration assessed using isobaric tags for relative and absolute quantitation proteomics profiling 被引量:3
10
作者 Shuai Wei Xue-Zhen Liang +12 位作者 Qian Hu Wei-Shan Wang Wen-Jing Xu Xiao-Qing Cheng Jiang Peng Quan-Yi Guo Shu-Yun Liu Wen Jiang Xiao Ding Gong-Hai Han Ping Liu Chen-Hui Shi Yu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期315-323,共9页
Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a label... Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a labeling technique termed isobaric tags for relative and absolute quantitation to investigate the protein profiles of spinal nerve tissues from Sprague-Dawley rats. In response to Wallerian degeneration, a total of 626 proteins were screened in sensory nerves, of which 368 were upregulated and 258 were downregulated. In addition, 637 proteins were screened in motor nerves, of which 372 were upregulated and 265 were downregulated. All identified proteins were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of bioinformatics, and the presence of several key proteins closely related to Wallerian degeneration were tested and verified using quantitative real-time polymerase chain reaction analyses. The differentially expressed proteins only identified in the sensory nerves were mainly relevant to various biological processes that included cell-cell adhesion, carbohydrate metabolic processes and cell adhesion, whereas differentially expressed proteins only identified in the motor nerves were mainly relevant to biological processes associated with the glycolytic process, cell redox homeostasis, and protein folding. In the aspect of the cellular component, the differentially expressed proteins in the sensory and motor nerves were commonly related to extracellular exosomes, the myelin sheath, and focal adhesion. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways. In conclusion, the present study screened differentially expressed proteins to reveal more about the differences and similarities between sensory and motor nerves during Wallerian degeneration. The present findings could provide a reference point for a future investigation into the differences between sensory and motor nerves in Wallerian degeneration and the characteristics of peripheral nerve regeneration. The study was approved by the Ethics Committee of the Chinese PLA General Hospital, China(approval No. 2016-x9-07) in September 2016. 展开更多
关键词 gene ontology Kyoto ENCYCLOPEDIA of Genes and Genomes ISOBARIC tags for RELATIVE and absolute quantitation motor NERVE PROTEOMICS sensory NERVE spinal NERVE wallerian degeneration
下载PDF
Identification of key genes involved in axon regeneration and Wallerian degeneration by weighted gene co-expression network analysis 被引量:4
11
作者 Yan Lu Qi Shan +4 位作者 Mei Ling Xi-An Ni Su-Su Mao Bin Yu Qian-Qian Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期911-919,共9页
Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore,investigating how axon regeneration and degeneration work together to repair perip... Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore,investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the molecular mechanisms and signal cascades underlying peripheral nerve repair and provide potential strategies for improving the low axon regeneration capacity of the central nervous system.In this study,we applied weighted gene co-expression network analysis to identify differentially expressed genes in proximal and distal sciatic nerve segments from rats with sciatic nerve injury.We identified 31 and 15 co-expression modules from the proximal and distal sciatic nerve segments,respectively.Functional enrichment analysis revealed that the differentially expressed genes in proximal modules promoted regeneration,while the differentially expressed genes in distal modules promoted neurodegeneration.Next,we constructed hub gene networks for selected modules and identified a key hub gene,Kif22,which was up-regulated in both nerve segments.In vitro experiments confirmed that Kif22 knockdown inhibited proliferation and migration of Schwann cells by modulating the activity of the extracellular signal-regulated kinase signaling pathway.Collectively,our findings provide a comparative framework of gene modules that are co-expressed in injured proximal and distal sciatic nerve segments,and identify Kif22 as a potential therapeutic target for promoting peripheral nerve injury repair via Schwann cell proliferation and migration.All animal experiments were approved by the Institutional Animal Ethics Committee of Nantong University,China(approval No.S20210322-008)on March 22,2021. 展开更多
关键词 axon regeneration extracellular signal-regulated kinase signaling pathway hub genes Kif22 peripheral nerve injury protein kinase Schwann cells wallerian degeneration weighted gene co-expression network analysis
下载PDF
Baculoviral inhibitor of apoptosis protein repeatcontaining protein 3 delays early Wallerian degeneration after sciatic nerve injury 被引量:1
12
作者 Min Cai Jian Shao +6 位作者 Bryant Yung Yi Wang Nan-Nan Gao Xi Xu Huan-Huan Zhang Yu-Mei Feng Deng-Bing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期845-853,共9页
Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Walleria... Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Wallerian degeneration of the peripheral nervous system.However,Wallerian degeneration regulating nerve injury and repair remains largely unknown,especially the early response.We have previously reported some key regulators of Wallerian degeneration after sciatic nerve injury.Baculoviral inhibitor of apoptosis protein repeat-containing protein 3(BIRC3)is an important factor that regulates apoptosis-inhibiting protein.In this study,we established rat models of right sciatic nerve injury.In vitro Schwann cell models were also established and subjected to gene transfection to inhibit and overexpress BIRC3.The data indicated that BIRC3 expression was significantly up-regulated after sciatic nerve injury.Both BIRC3 upregulation and downregulation affected the migration,proliferation and apoptosis of Schwan cells and affected the expression of related factors through activating c-fos and ERK signal pathway.Inhibition of BIRC3 delayed early Wallerian degeneration through inhibiting the apoptosis of Schwann cells after sciatic nerve injury.These findings suggest that BIRC3 plays an important role in peripheral nerve injury repair and regeneration.The study was approved by the Institutional Animal Care and Use Committee of Nantong University,China(approval No.2019-nsfc004)on March 1,2019. 展开更多
关键词 apoptosis baculoviral inhibitor of apoptosis protein repeat-containing protein 3 nerve degeneration rat Schwann cell sciatic nerve injury signal pathway wallerian degeneration
下载PDF
Role of microtubule dynamics in Wallerian degeneration and nerve regeneration after peripheral nerve injury 被引量:1
13
作者 Jingmin Liu Lixia Li +14 位作者 Ying Zou Lanya Fu Xinrui Ma Haowen Zhang Yizhou Xu Jiawei Xu Jiaqi Zhang Mi Li Xiaofang Hu Zhenlin Li Xianghai Wang Hao Sun Hui Zheng Lixin Zhu Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期673-681,共9页
Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cy... Wallerian degeneration,the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury,is essential for creating a permissive microenvironment for nerve regeneration,and involves cytoskeletal reconstruction.However,it is unclear whether microtubule dynamics play a role in this process.To address this,we treated cultured sciatic nerve explants,an in vitro model of Wallerian degeneration,with the microtubule-targeting agents paclitaxel and nocodazole.We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation,whereas nocodazole-induced microtubule destabilization inhibited these processes.Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration,as well as functional recovery of nerve conduction and target muscle and motor behavior,respectively.These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration.This study was approved by the Animal Care and Use Committee of Southern Medical University,China(approval No.SMUL2015081) on October 15,2015. 展开更多
关键词 AXON DEMYELINATION microtubule dynamics nerve regeneration NOCODAZOLE PACLITAXEL peripheral nerve injury Schwann cell wallerian degeneration
下载PDF
Emergence of the Wallerian degeneration pathway as a mechanism of secondary brain injury
14
作者 Ciaran Scott Hill Andrea Loreto 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第5期980-981,共2页
Augustus Volney Wal ler was a renowned British neurophysiologist who birthed the axon degeneration field in 1850 by describing curdling and fragmentation of the glossopharyngeal and hypoglossal cranial nerves of a fro... Augustus Volney Wal ler was a renowned British neurophysiologist who birthed the axon degeneration field in 1850 by describing curdling and fragmentation of the glossopharyngeal and hypoglossal cranial nerves of a frog following a transection injury.The degeneration of axons after a transection injury is now known as Wallerian degeneration(WD).Waller’s work was expanded by Santiago Ramón y Cajal who described in detail the morphological stages of WD from monitory fragmentation of the axon and the granular disintegration of the neurofibrils to the final resorption of the axon. 展开更多
关键词 degeneration NERVES wallerian
下载PDF
Polyethylene glycol-fusion retards Wallerian degeneration and rapidly restores behaviors lost after nerve severance
15
作者 George D.Bittner Michelle Mikesh Cameron L.Ghergherehchi 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期217-219,共3页
Some biological uses of polyethylene glycol(PEG):The use of PEG as a membrane fusogen was first reported in 1976with the creation of cell hybrids,formed by suspending two cell lines in a 50%w/w solution of PEG in w... Some biological uses of polyethylene glycol(PEG):The use of PEG as a membrane fusogen was first reported in 1976with the creation of cell hybrids,formed by suspending two cell lines in a 50%w/w solution of PEG in water. 展开更多
关键词 FIGURE PEG Polyethylene glycol-fusion retards wallerian degeneration and rapidly restores behaviors lost after nerve severance
下载PDF
Combining CUBIC Optical Clearing and Thy1-YFP-16 Mice to Observe Morphological Axon Changes During Wallerian Degeneration
16
作者 Yu-song YUAN Fei YU +3 位作者 Su-ping NIU Hao LU Yu-hui KOU Hai-lin XU 《Current Medical Science》 SCIE CAS 2021年第5期944-952,共9页
Objective:Wallerian degeneration is a pathological process closely related to peripheral nerve regeneration following injury,and includes the disintegration and phagocytosis of peripheral nervous system cells.Traditio... Objective:Wallerian degeneration is a pathological process closely related to peripheral nerve regeneration following injury,and includes the disintegration and phagocytosis of peripheral nervous system cells.Traditionally,morphological changes are observed by performing immunofluorescence staining after sectioning,which results in the loss of some histological information.The purpose of this study was to explore a new,nondestmetive,and systematic method for observing axonal histological changes during Wallerian degeneration.Methods:Thirty male Thy1-YFP-16 mice(SPF grade,6 weeks old,20±5 g)were randomly selected and divided into clear,unobstructed brain imaging cocktails and computational analysis(CUBIC)optical clearing(n=15)and traditional method groups(n=15).Five mice in each group were sacrificed at 1st,3rd,and 5th day following a crush operation.The histological axon changes were observed by CUBIC light optical clearing treatment,direct tissue section imaging,and HE staining.Results:The results revealed that,compared with traditional imaging methods,there was no physical damage to the samples,which allowed for three-dimensional and deep-seated tissue imaging through CUBIC.Local image information could be nicely obtained by direct fluorescence imaging and HE staining,but it was difficult to obtain image information of the entire sample.At the same time,the image information obtained by fluorescence imaging and HE staining was partially lost.Conclusion:The combining of CUBIC and Thy1-YFP transgenic mice allowed for a clear and comprehensive observation of histological changes of axons in Wallerian degeneration. 展开更多
关键词 wallerian degeneration AXON optical clearing clear unobstructed brain imaging cocktails and computational analysis Thy1-YFP transgenic mice
下载PDF
Axon degeneration: make the Schwann cell great again 被引量:10
17
作者 Keit Men Wong Elisabetta Babetto Bogdan Beirowski 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期518-524,共7页
Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is W... Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent 昀ndings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss. 展开更多
关键词 wallerian degeneration NEUROdegeneration GLIA OLIGODENDROCYTES MYELIN DEDIFFERENTIATION
下载PDF
From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer’s and Parkinson’s diseases 被引量:4
18
作者 Debia Wakhloo Jane Oberhauser +1 位作者 Angela Madira Sameehan Mahajani 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第12期2606-2614,共9页
Two of the most common neurodegenerative disorders-Alzheimer’s and Parkinson’s diseases-are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation... Two of the most common neurodegenerative disorders-Alzheimer’s and Parkinson’s diseases-are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation.The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer’s disease pathology.The major hallmark of Parkinson’s disease is the loss of dopaminergic neurons in the substantia nigra pars compacta,following the formation of Lewy bodies,which consists primarily of alpha-synuclein aggregates.However,the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood.Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders.Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients.While some publications provide significant findings related to axonal regeneration in Alzheimer’s and Parkinson’s diseases,they also highlight the limitations and obstacles to the development of neuroregenerative therapies.In this review,we summarize in vitro and in vivo findings related to neurogenesis,neuroregeneration and neurodegeneration in the context of Alzheimer’s and Parkinson’s diseases. 展开更多
关键词 ALPHA-SYNUCLEIN amyloid beta plaques autophagy dopaminergic neurons human iPSCs mitochondrial dysfunction scRNA sequencing synaptic dysfunction Tau wallerian degeneration
下载PDF
Early cyclosporin A treatment retards axonal degeneration in an experimental peripheral nerve injection injury model 被引量:1
19
作者 Ibrahim Erkutlu Mehmet Alptekin +3 位作者 Sirma Geyik Abidin Murat Geyik Inan Gezgin Abdulvahap G?k 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第2期266-270,共5页
Injury to peripheral nerves during injections of therapeutic agents such as penicillin G potas-sium is common in developing countries. It has been shown that cyclosporin A, a powerful immunosuppressive agent, can reta... Injury to peripheral nerves during injections of therapeutic agents such as penicillin G potas-sium is common in developing countries. It has been shown that cyclosporin A, a powerful immunosuppressive agent, can retard Wallerian degeneration after peripheral nerve crush injury. However, few studies are reported on the effects of cyclosporin A on peripheral nerve drug in-jection injury. This study aimed to assess the time-dependent efifcacy of cyclosporine-A as an immunosuppressant therapy in an experimental rat nerve injection injury model established by penicillin G potassium injection. The rats were randomly divided into three groups based on the length of time after nerve injury induced by cyclosporine-A administration (30 minutes, 8 or 24 hours). The compound muscle action potentials were recorded pre-injury, early post-injury (within 1 hour) and 4 weeks after injury and compared statistically. Tissue samples were taken from each animal for histological analysis. Compared to the control group, a significant im-provement of the compound muscle action potential amplitude value was observed only when cyclosporine-A was administered within 30 minutes of the injection injury (P 〈 0.05); at 8 or 24 hours after cyclosporine-A administration, compound muscle action potential amplitude was not changed compared with the control group. Thus, early immunosuppressant drug therapy may be a good alternative neuroprotective therapy option in experimental nerve injection injury induced by penicillin G potassium injection. 展开更多
关键词 nerve regeneration peripheral nerve injury injection injury cyclosporine A penicillin G potassium wallerian degeneration neuroelectrophysiology neural regeneration
下载PDF
Long noncoding RNA H19 regulates degeneration and regeneration of injured peripheral nerves 被引量:2
20
作者 Yu-Mei Feng Jian Shao +6 位作者 Min Cai Yi-Yue Zhou Yi Yao Jia-Xi Qian Zi-Han Ding Mao-Rong Jiang Deng-Bing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1847-1851,共5页
Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows... Our previous studies have shown that long noncoding RNA(lncRNA)H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration,and that it promotes the migration of Schwann cells and slows down the growth of dorsal root ganglion axons.However,the mechanism by which lncRNA H19 regulates neural repair and regeneration after peripheral nerve injury remains unclear.In this study,we established a Sprague-Dawley rat model of sciatic nerve transection injury.We performed in situ hybridization and found that at 4–7 days after sciatic nerve injury,lncRNA H19 was highly expressed.At 14 days before injury,adeno-associated virus was intrathecally injected into the L4–L5 foramina to disrupt or overexpress lncRNA H19.After overexpression of lncRNA H19,the growth of newly formed axons from the sciatic nerve was inhibited,whereas myelination was enhanced.Then,we performed gait analysis and thermal pain analysis to evaluate rat behavior.We found that lncRNA H19 overexpression delayed the recovery of rat behavior function,whereas interfering with lncRNA H19 expression improved functional recovery.Finally,we examined the expression of lncRNA H19 downstream target SEMA6D,and found that after lncRNA H19 overexpression,the SEMA6D protein level was increased.These findings suggest that lncRNA H19 regulates peripheral nerve degeneration and regeneration through activating SEMA6D in injured nerves.This provides a new clue to understand the role of lncRNA H19 in peripheral nerve degeneration and regeneration. 展开更多
关键词 adeno-associated virus dorsal root ganglion lncRNA H19 nerve degeneration nerve regeneration peripheral nerve rat sciatic nerve injury semaphorin 6D wallerian degeneration
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部