With the development of China's economy,the implementation scale and scope of hydraulic engineering projects are increasing,and the application of anti-seepage technology has an important influence on the construc...With the development of China's economy,the implementation scale and scope of hydraulic engineering projects are increasing,and the application of anti-seepage technology has an important influence on the construction quality of hydraulic engineering.In this paper,the significance and problems of the application of anti-seepage technology in the construction of hydraulic engineering projects were mainly analyzed,and specific application strategies were proposed.展开更多
The Francis turbine of Three Gorges hydropower station is one of the large turbines with great head variation in the world. The operational stability of the turbine has been the top subject for departments of design, ...The Francis turbine of Three Gorges hydropower station is one of the large turbines with great head variation in the world. The operational stability of the turbine has been the top subject for departments of design, research, manufacture and operation to be concerned about. During the course of preparing bid invitation documents and executing the contract for the Three Gorges left power plants turbogenerator units, the hydraulic stability of the turbine was regarded as the most important problem and specific stability indexes of the model turbine and the prototype turbine were respectively specified in the contract. In the model tests for turbine model acceptance, pressure fluctuation phenomena in the case of partial load were found to be different from the usual ones as people had known. Within the range of operating water head, there existed a peak value zone of pressure fluctuations with higher frequencies, and large amplitude pressure fluctuations simultaneously occurred in several localities from the spiral case entrance to the draft tube. On the basis of test results from the model, the influence of cavitation coefficient and aeration on pressure fluctuations is analyzed, and some measures to improve the hydraulic stability of turbines of Three Gorges hydropower station are expounded.展开更多
Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code co...Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model Open FOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional(2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.展开更多
In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi...In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.展开更多
Norwegian hydropower industry has more than 100 years of experiences in constructing more than4000 km-long unlined pressure shafts and tunnels with maximum static head of 1047 m(equivalent to almost 10.5 MPa) reache...Norwegian hydropower industry has more than 100 years of experiences in constructing more than4000 km-long unlined pressure shafts and tunnels with maximum static head of 1047 m(equivalent to almost 10.5 MPa) reached at unlined pressure tunnel of Nye Tyin project. Experiences gained from construction and operation of these unlined pressure shafts and tunnels were the foundation to develop design criteria and principles applied in Norway and some other countries. In addition to the confinement criteria, Norwegian state-of-the-art design principle for unlined pressure shaft and tunnel is that the minor principal stress at the location of unlined pressure shaft or tunnel should be more than the water pressure in the shaft or tunnel. This condition of the minor principal stress is prerequisite for the hydraulic jacking/splitting not to occur through joints and fractures in rock mass. Another common problem in unlined pressure shafts and tunnels is water leakage through hydraulically splitted joints or pre-existing open joints. This article reviews some of the first attempts of the use of unlined pressure shaft and tunnel concepts in Norway, highlights major failure cases and two successful cases of significance, applies Norwegian criteria to the cases and reviews and evaluates triggering factors for failure.This article further evaluates detailed engineering geology of failure cases and also assesses common geological features that could have aggravated the failure. The minor principal stress is investigated and quantified along unlined shaft and tunnel alignment of six selected project cases by using threedimensional numerical model. Furthermore, conditions of failure through pre-existing open joints by hydraulic jacking and leakage are assessed by using two-dimensional fluid flow analysis. Finally, both favorable and unfavorable ground conditions required for the applicability of Norwegian confinement criteria in locating the unlined pressure shafts and tunnels for geotectonic environment different from that of Norway are highlighted.展开更多
Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to ...Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to the classified thought of the object-oriented technique,the different 3D models of geological and engi-neering objects were realized based on the data structure,including terrain class,strata class,fault class,and limit class;and the modeling mechanism was alterna-tive. Finally,the 3D integrated model was established by Boolean operations be-tween 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification,the arbitrary slicing analysis of the 3D model,the geological analysis of the dam,and underground engineering. They provide powerful theoretical prin-ciples and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.展开更多
To solve the engineering and scientific problems in construction diversion and its simulation analysis, a complete scheme is presented. Firstly, the complex constraint relationship was analyzed among main buildings, d...To solve the engineering and scientific problems in construction diversion and its simulation analysis, a complete scheme is presented. Firstly, the complex constraint relationship was analyzed among main buildings, diversion buildings and flow control. Secondly, the time-space relationship model of construction diversion system and the general block diagram-oriented simulation model of diversion process were set up. Then, the corresponding numerical simulation method and 3D dynamic visual simulation method were put forward. Further, the simulation and optimization platform of construction diversion control process was developed, integrated with simulation modeling, computation and visualization. Finally, these methods were applied to a practical project successfully, showing that the modeling process is convenient, the computation and the visual analysis can be coupled effectively, and the results conform to practical state. They provide new theoretical principles and technical measures for analyzing the control problems encountered in construction diversion of hydraulic and hydroelectric engineering under complex conditions.展开更多
Water level fluctuation of is an important ecological character of lakes in monsoon climate zone.It is the key driver to seasonal change of the wetlands and associated habitats,which provide vital inhabiting condition...Water level fluctuation of is an important ecological character of lakes in monsoon climate zone.It is the key driver to seasonal change of the wetlands and associated habitats,which provide vital inhabiting conditions for different species in summer and winter,or,wet season and dry season.Due the hydrologic regime changes in the recent years after the operation of Three Gorges Dam,in 2012,the government of Hunan province proposed Chenglingji Hydraulic Project,aiming at water level control in dry season at Chenglingji,where the outlet of Dongting Lake located.Through different operations on water retreat process,five scenarios on the water level control from 21 m to 24 m were set in the plan.The potential ecological impacts of the project are under enormous public concern.To analyze potential impacts from different scenarios of water level control on the wetlands,this paper studied the topography of Dongting Lake bed and wetlands in dry season,by using Digital Elevation Model(DEM)and 15 images from HJ satellite and 1 image from Landsat TM.The wetlands at water levels of 19 m to 27 m were analyzed.The study revealed that there were 4 terrain steps on Dongting Lake bed from the West Dongting Lake to East Dongting Lake.Water level control at Chenglingji would increase area of open water in East Dongting Lake and Hengling Lake areas,while its effect on South Dongting Lake and West Dongting Lake areas due to higher terrain was weaker.Particularly,the area percentages of South Dongting Lake area did not change with water level fluctuation,due to its 2 elevation steps.The area percentages of various types of the wetlands in Dongting Lake area during the processes of water level rising and retreating were quite different,even in the relatively close water level interval.The retreating area of open water in autumn was larger than that during the spring flooding.The 23 m was the key water level,a turning point of the area change of the wetlands in Dongting Lake area.Areas of open water,mudflat,meadows and their percentages changed significantly at water levels above 23 meters,with increasing of open water area and shrinking of meadow area,their areas would decrease 30 000 ha.As the key habitats for wintering geese,the area of meadows was from near 70 000 ha to 10 000 ha.Among 5 scenarios,the impact of the scenario at 21 m elevation on wetlands was the weakest.However,water level dropping was still postponed than that of natural hydrological process in the scenarios.It resulted in longer inundation of large area of lakebed at elevation of 22-23 m,increasing habitats for aquatic biodiversity but reducing area of the meadows,where is the key habitat for wintering geese.All the other water level control scenarios would cause large area of inundation of lakebed in dry season and dramatic change of wetlands.To maintain the natural wetlands in Dongting Lake area,the Chenglingji Hydraulic Project should be considered in a more cautious way and further researches were needed on the response of aquatic biodiversity and wintering water birds.展开更多
文摘With the development of China's economy,the implementation scale and scope of hydraulic engineering projects are increasing,and the application of anti-seepage technology has an important influence on the construction quality of hydraulic engineering.In this paper,the significance and problems of the application of anti-seepage technology in the construction of hydraulic engineering projects were mainly analyzed,and specific application strategies were proposed.
文摘The Francis turbine of Three Gorges hydropower station is one of the large turbines with great head variation in the world. The operational stability of the turbine has been the top subject for departments of design, research, manufacture and operation to be concerned about. During the course of preparing bid invitation documents and executing the contract for the Three Gorges left power plants turbogenerator units, the hydraulic stability of the turbine was regarded as the most important problem and specific stability indexes of the model turbine and the prototype turbine were respectively specified in the contract. In the model tests for turbine model acceptance, pressure fluctuation phenomena in the case of partial load were found to be different from the usual ones as people had known. Within the range of operating water head, there existed a peak value zone of pressure fluctuations with higher frequencies, and large amplitude pressure fluctuations simultaneously occurred in several localities from the spiral case entrance to the draft tube. On the basis of test results from the model, the influence of cavitation coefficient and aeration on pressure fluctuations is analyzed, and some measures to improve the hydraulic stability of turbines of Three Gorges hydropower station are expounded.
基金the State Key Laboratory of Hydraulic Engineering Simulation and Safety Foundation (No. HESS-1412)the National Science Fund (No. 51179178)the 111 Project (No. B14028)
文摘Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model Open FOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional(2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2012041)the Jiangsu Province Ordinary University Graduate Student Research Innovation Project(Grant No.CXZZ13_0256)
文摘In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.
文摘Norwegian hydropower industry has more than 100 years of experiences in constructing more than4000 km-long unlined pressure shafts and tunnels with maximum static head of 1047 m(equivalent to almost 10.5 MPa) reached at unlined pressure tunnel of Nye Tyin project. Experiences gained from construction and operation of these unlined pressure shafts and tunnels were the foundation to develop design criteria and principles applied in Norway and some other countries. In addition to the confinement criteria, Norwegian state-of-the-art design principle for unlined pressure shaft and tunnel is that the minor principal stress at the location of unlined pressure shaft or tunnel should be more than the water pressure in the shaft or tunnel. This condition of the minor principal stress is prerequisite for the hydraulic jacking/splitting not to occur through joints and fractures in rock mass. Another common problem in unlined pressure shafts and tunnels is water leakage through hydraulically splitted joints or pre-existing open joints. This article reviews some of the first attempts of the use of unlined pressure shaft and tunnel concepts in Norway, highlights major failure cases and two successful cases of significance, applies Norwegian criteria to the cases and reviews and evaluates triggering factors for failure.This article further evaluates detailed engineering geology of failure cases and also assesses common geological features that could have aggravated the failure. The minor principal stress is investigated and quantified along unlined shaft and tunnel alignment of six selected project cases by using threedimensional numerical model. Furthermore, conditions of failure through pre-existing open joints by hydraulic jacking and leakage are assessed by using two-dimensional fluid flow analysis. Finally, both favorable and unfavorable ground conditions required for the applicability of Norwegian confinement criteria in locating the unlined pressure shafts and tunnels for geotectonic environment different from that of Norway are highlighted.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50479048 and 50539120)the National Science Fund for Distinguished Young Scholars of China (Grant No. 50525927)
文摘Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to the classified thought of the object-oriented technique,the different 3D models of geological and engi-neering objects were realized based on the data structure,including terrain class,strata class,fault class,and limit class;and the modeling mechanism was alterna-tive. Finally,the 3D integrated model was established by Boolean operations be-tween 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification,the arbitrary slicing analysis of the 3D model,the geological analysis of the dam,and underground engineering. They provide powerful theoretical prin-ciples and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.
基金Supported by the National Basic Research Program of China("973"Program)(Grant No.2007CB714101)the National Key Technology R&D Program in the11th Five year Plan of China(Grant No.2006BAB04A13)the National Science Fund for Distinguished Young Scholars of China(Grant No.50525927)
文摘To solve the engineering and scientific problems in construction diversion and its simulation analysis, a complete scheme is presented. Firstly, the complex constraint relationship was analyzed among main buildings, diversion buildings and flow control. Secondly, the time-space relationship model of construction diversion system and the general block diagram-oriented simulation model of diversion process were set up. Then, the corresponding numerical simulation method and 3D dynamic visual simulation method were put forward. Further, the simulation and optimization platform of construction diversion control process was developed, integrated with simulation modeling, computation and visualization. Finally, these methods were applied to a practical project successfully, showing that the modeling process is convenient, the computation and the visual analysis can be coupled effectively, and the results conform to practical state. They provide new theoretical principles and technical measures for analyzing the control problems encountered in construction diversion of hydraulic and hydroelectric engineering under complex conditions.
基金Under the auspices of National Key R&D Program of China(2017YFC0405300)
文摘Water level fluctuation of is an important ecological character of lakes in monsoon climate zone.It is the key driver to seasonal change of the wetlands and associated habitats,which provide vital inhabiting conditions for different species in summer and winter,or,wet season and dry season.Due the hydrologic regime changes in the recent years after the operation of Three Gorges Dam,in 2012,the government of Hunan province proposed Chenglingji Hydraulic Project,aiming at water level control in dry season at Chenglingji,where the outlet of Dongting Lake located.Through different operations on water retreat process,five scenarios on the water level control from 21 m to 24 m were set in the plan.The potential ecological impacts of the project are under enormous public concern.To analyze potential impacts from different scenarios of water level control on the wetlands,this paper studied the topography of Dongting Lake bed and wetlands in dry season,by using Digital Elevation Model(DEM)and 15 images from HJ satellite and 1 image from Landsat TM.The wetlands at water levels of 19 m to 27 m were analyzed.The study revealed that there were 4 terrain steps on Dongting Lake bed from the West Dongting Lake to East Dongting Lake.Water level control at Chenglingji would increase area of open water in East Dongting Lake and Hengling Lake areas,while its effect on South Dongting Lake and West Dongting Lake areas due to higher terrain was weaker.Particularly,the area percentages of South Dongting Lake area did not change with water level fluctuation,due to its 2 elevation steps.The area percentages of various types of the wetlands in Dongting Lake area during the processes of water level rising and retreating were quite different,even in the relatively close water level interval.The retreating area of open water in autumn was larger than that during the spring flooding.The 23 m was the key water level,a turning point of the area change of the wetlands in Dongting Lake area.Areas of open water,mudflat,meadows and their percentages changed significantly at water levels above 23 meters,with increasing of open water area and shrinking of meadow area,their areas would decrease 30 000 ha.As the key habitats for wintering geese,the area of meadows was from near 70 000 ha to 10 000 ha.Among 5 scenarios,the impact of the scenario at 21 m elevation on wetlands was the weakest.However,water level dropping was still postponed than that of natural hydrological process in the scenarios.It resulted in longer inundation of large area of lakebed at elevation of 22-23 m,increasing habitats for aquatic biodiversity but reducing area of the meadows,where is the key habitat for wintering geese.All the other water level control scenarios would cause large area of inundation of lakebed in dry season and dramatic change of wetlands.To maintain the natural wetlands in Dongting Lake area,the Chenglingji Hydraulic Project should be considered in a more cautious way and further researches were needed on the response of aquatic biodiversity and wintering water birds.