Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing ...Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 μm and at a quantity of 6 gm^(-2) at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles.The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 μm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 μm. For salt particles sized 80 μm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m^(-2).展开更多
The northwestern Pacific (NWP) is a fog-prone area, especially the ocean east of the Kuril Islands. The present study analyzes how the Pacific-Japan (PJ) teleconnection pattern influences July sea fog in the fog-p...The northwestern Pacific (NWP) is a fog-prone area, especially the ocean east of the Kuril Islands. The present study analyzes how the Pacific-Japan (PJ) teleconnection pattern influences July sea fog in the fog-prone area using independent datasets. The covariation between the PJ index and sea fog frequency (SFF) index in July indicates a close correlation, with a coefficient of 0.62 exceeding the 99% confidence level. Composite analysis based on the PJ index, a case study, and model analysis based on GFDL-ESM2M, show that in high PJ index years the convection over the east of the Philippines strengthens and then triggers a Rossby wave, which propagates northward to maintain an anticyclonic anomaly in the midlatitudes, indicating a northeastward shift of the NWP subtropical high. The anticyclonic anomaly facilitates the formation of relatively stable atmospheric stratification or even an inversion layer in the lower level of the troposphere, and strengthens the horizontal southerly moisture transportation from the tropical-subtropical oceans to the fog-prone area. On the other hand, a greater meridional SST gradient over the cold flank of the Kuroshio Extension, due to ocean downwelling, is produced by the anticyclonic wind stress anomaly. Both of these two aspects are favorable for the warm and humid air to cool, condense, and form fog droplets, when air masses cross the SST front. The opposite circumstances occur in low PJ index years, which are not conducive to the formation of sea fog. Finally, a multi-model ensemble mean projection reveals a prominent downward trend of the PJ index after the 2030s, implying a possible decline of the SFF in this period.展开更多
基金partially supported by the National Science Foundation of China(Grant Nos.41205100,41375136 and 41405127)the Beijing Municipal Science and Technology Commission(Project No.Z141100001014017)the National Department of Public Benefit Research Foundation of China(Grant No.GYHY201306065)
文摘Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 μm and at a quantity of 6 gm^(-2) at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles.The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 μm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 μm. For salt particles sized 80 μm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m^(-2).
基金supported by a "973" project (Grant No. 2012CB955602) Natural Science Foundation of China and the Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)the NSFC (Grant No. 41175006)supported by the Fundamental Research Funds for the Central Universities
文摘The northwestern Pacific (NWP) is a fog-prone area, especially the ocean east of the Kuril Islands. The present study analyzes how the Pacific-Japan (PJ) teleconnection pattern influences July sea fog in the fog-prone area using independent datasets. The covariation between the PJ index and sea fog frequency (SFF) index in July indicates a close correlation, with a coefficient of 0.62 exceeding the 99% confidence level. Composite analysis based on the PJ index, a case study, and model analysis based on GFDL-ESM2M, show that in high PJ index years the convection over the east of the Philippines strengthens and then triggers a Rossby wave, which propagates northward to maintain an anticyclonic anomaly in the midlatitudes, indicating a northeastward shift of the NWP subtropical high. The anticyclonic anomaly facilitates the formation of relatively stable atmospheric stratification or even an inversion layer in the lower level of the troposphere, and strengthens the horizontal southerly moisture transportation from the tropical-subtropical oceans to the fog-prone area. On the other hand, a greater meridional SST gradient over the cold flank of the Kuroshio Extension, due to ocean downwelling, is produced by the anticyclonic wind stress anomaly. Both of these two aspects are favorable for the warm and humid air to cool, condense, and form fog droplets, when air masses cross the SST front. The opposite circumstances occur in low PJ index years, which are not conducive to the formation of sea fog. Finally, a multi-model ensemble mean projection reveals a prominent downward trend of the PJ index after the 2030s, implying a possible decline of the SFF in this period.