To predict future spatio-temporal patterns of climate change, we should fully understand the spatio-temporal patterns of climate change during the past millennium. But, we are not yet able to delineate the patterns be...To predict future spatio-temporal patterns of climate change, we should fully understand the spatio-temporal patterns of climate change during the past millennium. But, we are not yet able to delineate the patterns because the qualities of the retrieved proxy records and the spatial coverage of those records are not adequate. Northern Xinjiang of China is one of such areas where the records are not adequate. Here, we present a 500-yr land-surface moisture sequence from Heiyangpo Peat(48.34°N, 87.18°E, 1353 m a.s.l) in the southern Altai Mountains within northern Xinjiang. Specifically, peat carbon isotope value of cellulose(δ^(13)C_(cellulose)) was used to estimate the warm-season moisture variations and the degree of humification was used to constrain the δ^(13)C_(cellulose)-based hydrological interpretation. The climatic attributions of the interpreted hydrological variations were based on the warm-season temperature reconstructed from Belukha ice core and the warm-season precipitation inferred from the reconstructed Atlantic Multidecadal Oscillations(AMO). The results show that humification decreased and the δ^(13)C_(celluose)-suggested moisture decreased from ~1510 to ~1775 AD, implying that a constant dryingcondition may have inhibited peat decay. Our comparison with reconstructed climatic parameters suggests that the moisture-level decline was most likely resulted from a constant decline of precipitation. The results also show that humification kept a stable level and the δ^(13)C_(celluose)-suggested moisture also decreased from ~1775 to ~2013 AD, implying that peat decay in the acrotelm primarily did not depend on the water availability or an aerobic environment. Again, our comparison with reconstructed climatic parameters suggests that the land-surface moisturelevel decline was most likely resulted from a steady warming of growing-season temperature.展开更多
This paper describes explicit and parameterized simulations of midsummer precipitation over the continental United States for two distinct episodes: moderate large-scale forcing and weak forcing. The objective is to ...This paper describes explicit and parameterized simulations of midsummer precipitation over the continental United States for two distinct episodes: moderate large-scale forcing and weak forcing. The objective is to demonstrate the capability of explicit convection at currently affordable grid-resolution and compare it with parameterized realizations. Under moderate forcing, 3-kin grid-resolution explicit simulations represent rainfall coherence remarkably well. The observed daily convective generation near the Continental Divide and the subsequent organization and propagation are reproduced qualitatively. The propagation speed, zonal extent and duration of the rainfall streaks compare favorably with their observed counterparts, although the streak frequency is underestimated. The simulations at -10-km grid-resolution applying conventional convective parameterization schemes also replicate reasonably well the diurnal convective regeneration in moderate forcing. The performance of the 3-km grid-resolution model demonstrates the potential of -1-km-resolution explicit cloud-resolving models for the prediction of warm season precipitation for moderately forced environments. In weak forcing conditions, however, predictions of precipitation coherence and diurnal variability are much poorer. This suggests that an even finer resolution explicit model is required to adequately treat convective initiation and upscale organization typical of the warm season over the continental U.S.展开更多
Using accumulated temperature measures to predict plant development may provide guidance on timing of management practices to minimize competition between warm and cool-season components of mixed pastures. However, te...Using accumulated temperature measures to predict plant development may provide guidance on timing of management practices to minimize competition between warm and cool-season components of mixed pastures. However, temperature and plant development relationships for warm-season pasture grasses common in the southern Great Plains of the USA have not been extensively studied. Under controlled environment conditions, base temperature (Tbase) values were determined for Big bluestem (Andropogon gerardii Vitman), Indiangrass (Sorghastrum nutans, (L.) Nash), Little bluestem (Schizachyrium scoparium (Michx) Nash) and, Sideoats grama (Bouteloua curtipendula (Michx) Torr). Measures of the accumulated temperature requirement for the phyllochron (leaf appearance interval) were made under a range of temperature regimes for these same species. Mean Tbase was 8.1°C and differences among species were not significant (P > 0.05). Within temperature regimes mainstem leaf appearance was closely and linearly related to accumulated temperature above Tbase. Increase of 7.5°C in night temperature increased phyllochron by a mean of 43%, but similar increase in day temperature only increased phyllochron by 16%. Phyllochron increased by 6.4°C leaf-1 for each 1°C increase in daily mean temperature within the range of 15.0°C to 22.5°C. If accumulated temperature measures are to monitor reliably the development of warm-season grasses, allowance must be made for changes in phyllochron as the growing season progresses.展开更多
Effects of transplanted seedling density and species on sward structure of native warm-season grass (NWSG) stands were compared in a randomized complete block design. About 6-week-old NWSG (big bluestem (BB, Andropogo...Effects of transplanted seedling density and species on sward structure of native warm-season grass (NWSG) stands were compared in a randomized complete block design. About 6-week-old NWSG (big bluestem (BB, Andropogon gerardii Vitman), eastern gamagrass (GG, Tripsacum dactyloides L.), indiangrass [IG, Sorghastrum nutans (L.) Nash] and switchgrass (SG, Panicum virgatum) seedlings were transplanted in 45-cm wide rows on clean-tilled seedbeds. Within-row spacing was 30, 25, or, 20 cm giving 10, 12, and 15 plants m-2 as low, medium, and high seedling density, respectively. During establishment, the stands were allowed uninterrupted first year growth without fertilizers or irrigation but when necessary, tall-growing broadleaf weeds were mechanically removed. In the following spring, all dead standing biomass was mowed down to allow emerging tillers access to sunlight. During the second year after planting, early-spring basal diameters, row-length intercepted by the NWSG crowns, mid-summer sward heights, and percentage bare ground were determined. From the second June after planting, and for two consecutive years, plots were harvested twice year-1 to assess forage biomass. Data showed that, unlike species, seedling density had no effect on the assessed parameters. Cumulative forage biomass, in kg DM ha-1, was the least for GG (4901) at low and the most (18,245) for SG at high seedling density during the second year. Corresponding values for the third year were 4500 and 7799 kg DM ha-1. Basal diameters ranged from 18 cm (BB) to 24 cm (IG) while percent row intercepts were from 6 (GG) to 46 (IG) with sward heights measuring 41 cm (IG) to 54 cm (GG). In each stand, percent ground cover by the NWSGs, and at every seedling density, averaged 60.5. Transplanting at ≥10 plant m-2 resulted in harvest-ready stands by the second year of establishment. And while close spacing favored the NWSGs against weeds, data showed that an initial plant density of >10 plants m-2 may not result in increased forage production worthy the additional establishment cost. Data on response to fertility management and forage quality attributes are necessary for more reliable practical recommendations.展开更多
Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root...Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinfi, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid- and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den- sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.展开更多
The scarcity of proxies and calibration models for quantitatively reconstructing millennial timescale seasonal temperature tremendously constraints our understanding of the Holocene thermal variation and its driven me...The scarcity of proxies and calibration models for quantitatively reconstructing millennial timescale seasonal temperature tremendously constraints our understanding of the Holocene thermal variation and its driven mechanisms.Here,we established two global warm-season temperature models by applying deep learning neural network analysis to the branched tetraether membrane lipids originating from surface soil and lacustrine sediment bacteria.We utilized these optimal models in global well-dated lacustrine,peatland,and loess profiles covering the Holocene.All reconstructions of warm-season temperatures,consistent with climate model simulations,indicate cooling trends since the early Holocene,primarily induced by decreased solar radiation in the Northern Hemisphere due to the precession peak at the early.We further demonstrated that the membrane lipids can effectively enhance the future millennial seasonal temperature research,including winter temperatures,without being restricted by geographical location and sedimentary carrier.展开更多
Background:Native warm-season grass(NWSG)mixtures may provide a lownitrogen(N)-input summer perennial forage option to extensively managed forage-livestock systems.Methods:Mixed pastures of big bluestem(Andropogon ger...Background:Native warm-season grass(NWSG)mixtures may provide a lownitrogen(N)-input summer perennial forage option to extensively managed forage-livestock systems.Methods:Mixed pastures of big bluestem(Andropogon gerardii Vitman),little bluestem(Schizachyrium scoparium Michx.),and indiangrass(Sorghastrum nutans L.)fertilized with 0 or 67 kgNha−1 were continuously stocked with beef heifers and cows.Forage mass,nutritive value,and canopy heights were determined every 2 weeks during the grazing season.Stand persistence measures included the canopy cover and leaf area index(LAI)and plant crown density at spring emergence following 3 years of grazing management.Results:Forage mass,canopy height,and stocking densities were greater for N-fertilized NWSG than unfertilized NWSG for the first 30 days of the growing season across the 3-year study.Forage NWSG fertilized with N had a greater decrease in LAI during the growing season(51%decrease)than unfertilized NWSG.Spring NWSG plant density estimates following 3 years of grazing did not differ across N management strategies.Conclusions:Forage NWSG mixtures supported superior forage attributes and greater stocking densities early in the grazing season under low-level N than zero-N-input systems and may provide a low-N-input alternative for improved species use in southeastern US forage-livestock systems.展开更多
基金financially supported by Chinese Natural Science International Cooperation Program Foundation Grant (No. 41361140361)Chinese Natural Science Foundation Grant (No. U1203821L08)Chinese Academy Sciences International Cooperation Program (No. GJHZ201315)
文摘To predict future spatio-temporal patterns of climate change, we should fully understand the spatio-temporal patterns of climate change during the past millennium. But, we are not yet able to delineate the patterns because the qualities of the retrieved proxy records and the spatial coverage of those records are not adequate. Northern Xinjiang of China is one of such areas where the records are not adequate. Here, we present a 500-yr land-surface moisture sequence from Heiyangpo Peat(48.34°N, 87.18°E, 1353 m a.s.l) in the southern Altai Mountains within northern Xinjiang. Specifically, peat carbon isotope value of cellulose(δ^(13)C_(cellulose)) was used to estimate the warm-season moisture variations and the degree of humification was used to constrain the δ^(13)C_(cellulose)-based hydrological interpretation. The climatic attributions of the interpreted hydrological variations were based on the warm-season temperature reconstructed from Belukha ice core and the warm-season precipitation inferred from the reconstructed Atlantic Multidecadal Oscillations(AMO). The results show that humification decreased and the δ^(13)C_(celluose)-suggested moisture decreased from ~1510 to ~1775 AD, implying that a constant dryingcondition may have inhibited peat decay. Our comparison with reconstructed climatic parameters suggests that the moisture-level decline was most likely resulted from a constant decline of precipitation. The results also show that humification kept a stable level and the δ^(13)C_(celluose)-suggested moisture also decreased from ~1775 to ~2013 AD, implying that peat decay in the acrotelm primarily did not depend on the water availability or an aerobic environment. Again, our comparison with reconstructed climatic parameters suggests that the land-surface moisturelevel decline was most likely resulted from a steady warming of growing-season temperature.
基金The National Center for Atmospheric Research is sponsored by the National Science Foundation.
文摘This paper describes explicit and parameterized simulations of midsummer precipitation over the continental United States for two distinct episodes: moderate large-scale forcing and weak forcing. The objective is to demonstrate the capability of explicit convection at currently affordable grid-resolution and compare it with parameterized realizations. Under moderate forcing, 3-kin grid-resolution explicit simulations represent rainfall coherence remarkably well. The observed daily convective generation near the Continental Divide and the subsequent organization and propagation are reproduced qualitatively. The propagation speed, zonal extent and duration of the rainfall streaks compare favorably with their observed counterparts, although the streak frequency is underestimated. The simulations at -10-km grid-resolution applying conventional convective parameterization schemes also replicate reasonably well the diurnal convective regeneration in moderate forcing. The performance of the 3-km grid-resolution model demonstrates the potential of -1-km-resolution explicit cloud-resolving models for the prediction of warm season precipitation for moderately forced environments. In weak forcing conditions, however, predictions of precipitation coherence and diurnal variability are much poorer. This suggests that an even finer resolution explicit model is required to adequately treat convective initiation and upscale organization typical of the warm season over the continental U.S.
文摘Using accumulated temperature measures to predict plant development may provide guidance on timing of management practices to minimize competition between warm and cool-season components of mixed pastures. However, temperature and plant development relationships for warm-season pasture grasses common in the southern Great Plains of the USA have not been extensively studied. Under controlled environment conditions, base temperature (Tbase) values were determined for Big bluestem (Andropogon gerardii Vitman), Indiangrass (Sorghastrum nutans, (L.) Nash), Little bluestem (Schizachyrium scoparium (Michx) Nash) and, Sideoats grama (Bouteloua curtipendula (Michx) Torr). Measures of the accumulated temperature requirement for the phyllochron (leaf appearance interval) were made under a range of temperature regimes for these same species. Mean Tbase was 8.1°C and differences among species were not significant (P > 0.05). Within temperature regimes mainstem leaf appearance was closely and linearly related to accumulated temperature above Tbase. Increase of 7.5°C in night temperature increased phyllochron by a mean of 43%, but similar increase in day temperature only increased phyllochron by 16%. Phyllochron increased by 6.4°C leaf-1 for each 1°C increase in daily mean temperature within the range of 15.0°C to 22.5°C. If accumulated temperature measures are to monitor reliably the development of warm-season grasses, allowance must be made for changes in phyllochron as the growing season progresses.
文摘Effects of transplanted seedling density and species on sward structure of native warm-season grass (NWSG) stands were compared in a randomized complete block design. About 6-week-old NWSG (big bluestem (BB, Andropogon gerardii Vitman), eastern gamagrass (GG, Tripsacum dactyloides L.), indiangrass [IG, Sorghastrum nutans (L.) Nash] and switchgrass (SG, Panicum virgatum) seedlings were transplanted in 45-cm wide rows on clean-tilled seedbeds. Within-row spacing was 30, 25, or, 20 cm giving 10, 12, and 15 plants m-2 as low, medium, and high seedling density, respectively. During establishment, the stands were allowed uninterrupted first year growth without fertilizers or irrigation but when necessary, tall-growing broadleaf weeds were mechanically removed. In the following spring, all dead standing biomass was mowed down to allow emerging tillers access to sunlight. During the second year after planting, early-spring basal diameters, row-length intercepted by the NWSG crowns, mid-summer sward heights, and percentage bare ground were determined. From the second June after planting, and for two consecutive years, plots were harvested twice year-1 to assess forage biomass. Data showed that, unlike species, seedling density had no effect on the assessed parameters. Cumulative forage biomass, in kg DM ha-1, was the least for GG (4901) at low and the most (18,245) for SG at high seedling density during the second year. Corresponding values for the third year were 4500 and 7799 kg DM ha-1. Basal diameters ranged from 18 cm (BB) to 24 cm (IG) while percent row intercepts were from 6 (GG) to 46 (IG) with sward heights measuring 41 cm (IG) to 54 cm (GG). In each stand, percent ground cover by the NWSGs, and at every seedling density, averaged 60.5. Transplanting at ≥10 plant m-2 resulted in harvest-ready stands by the second year of establishment. And while close spacing favored the NWSGs against weeds, data showed that an initial plant density of >10 plants m-2 may not result in increased forage production worthy the additional establishment cost. Data on response to fertility management and forage quality attributes are necessary for more reliable practical recommendations.
基金National Council for Scientific and Technological Research of Argentina (CONICET PIP Ner. 00211)
文摘Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinfi, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid- and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den- sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.
基金supported by the National Natural Science Foundation of China(42230503)。
文摘The scarcity of proxies and calibration models for quantitatively reconstructing millennial timescale seasonal temperature tremendously constraints our understanding of the Holocene thermal variation and its driven mechanisms.Here,we established two global warm-season temperature models by applying deep learning neural network analysis to the branched tetraether membrane lipids originating from surface soil and lacustrine sediment bacteria.We utilized these optimal models in global well-dated lacustrine,peatland,and loess profiles covering the Holocene.All reconstructions of warm-season temperatures,consistent with climate model simulations,indicate cooling trends since the early Holocene,primarily induced by decreased solar radiation in the Northern Hemisphere due to the precession peak at the early.We further demonstrated that the membrane lipids can effectively enhance the future millennial seasonal temperature research,including winter temperatures,without being restricted by geographical location and sedimentary carrier.
文摘Background:Native warm-season grass(NWSG)mixtures may provide a lownitrogen(N)-input summer perennial forage option to extensively managed forage-livestock systems.Methods:Mixed pastures of big bluestem(Andropogon gerardii Vitman),little bluestem(Schizachyrium scoparium Michx.),and indiangrass(Sorghastrum nutans L.)fertilized with 0 or 67 kgNha−1 were continuously stocked with beef heifers and cows.Forage mass,nutritive value,and canopy heights were determined every 2 weeks during the grazing season.Stand persistence measures included the canopy cover and leaf area index(LAI)and plant crown density at spring emergence following 3 years of grazing management.Results:Forage mass,canopy height,and stocking densities were greater for N-fertilized NWSG than unfertilized NWSG for the first 30 days of the growing season across the 3-year study.Forage NWSG fertilized with N had a greater decrease in LAI during the growing season(51%decrease)than unfertilized NWSG.Spring NWSG plant density estimates following 3 years of grazing did not differ across N management strategies.Conclusions:Forage NWSG mixtures supported superior forage attributes and greater stocking densities early in the grazing season under low-level N than zero-N-input systems and may provide a low-N-input alternative for improved species use in southeastern US forage-livestock systems.