期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
Forecast Error and Predictability for the Warm-sector and the Frontal Rainstorm in South China 被引量:1
1
作者 孙璐 王秋萍 +4 位作者 陈思远 高彦青 张旭鹏 时洋 马旭林 《Journal of Tropical Meteorology》 SCIE 2023年第1期128-141,共14页
In south China, warm-sector rainstorms are significantly different from the traditional frontal rainstorms due to complex mechanism, which brings great challenges to their forecast. In this study, based on ensemble fo... In south China, warm-sector rainstorms are significantly different from the traditional frontal rainstorms due to complex mechanism, which brings great challenges to their forecast. In this study, based on ensemble forecasting, the high-resolution mesoscale numerical forecast model WRF was used to investigate the effect of initial errors on a warmsector rainstorm and a frontal rainstorm under the same circulation in south China, respectively. We analyzed the sensitivity of forecast errors to the initial errors and their evolution characteristics for the warm-sector and the frontal rainstorm. Additionally, the difference of the predictability was compared via adjusting the initial values of the GOOD member and the BAD member. Compared with the frontal rainstorm, the warm-sector rainstorm was more sensitive to initial error, which increased faster in the warm-sector. Furthermore, the magnitude of error in the warm-sector rainstorm was obviously larger than that of the frontal rainstorm, while the spatial scale of the error was smaller. Similarly, both types of the rainstorm were limited by practical predictability and inherent predictability, while the nonlinear increase characteristics occurred to be more distinct in the warm-sector rainstorm, resulting in the lower inherent predictability.The comparison between the warm-sector rainstorm and the frontal rainstorm revealed that the forecast field was closer to the real situation derived from more accurate initial errors, but only the increase rate in the frontal rainstorm was restrained evidently. 展开更多
关键词 warm-sector rainstorm frontal rainstorm error evolution PREDICTABILITY
下载PDF
Comparison of Microphysical Characteristics of Warm-sector,Frontal and Shear-line Heavy Rainfall During the Pre-summer Rainy Season in South China
2
作者 夏丰 刘显通 +6 位作者 胡胜 黎慧琦 饶晓娜 林青 肖辉 冯璐 赖睿泽 《Journal of Tropical Meteorology》 SCIE 2023年第2期204-215,共12页
Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we invest... Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we investigated the differences in microphysical characteristics of heavy rainfall events during the period of 10-15 May 2022 based on the combined observations from 11 S-band polarimetric radars in south China.The conclusions are as follows:(1)WR has the highest radar echo top height,the strongest radar echo at all altitudes,the highest lightning density,and the most active ice-phase process,which suggests that the convection is the most vigorous in the WR,moderate in the FR,and the weakest in the SR.(2)Three types of rainfall are all marine-type precipitation,the massweighted mean diameter(Dm,mm)and the intercept parameter(Nw,mm^(-1) m^(-3))of the raindrops in the WR are the largest.(3)The WR possesses the highest proportion of graupel compared with the FR and SR,and stronger updrafts and more abundant water vapor supply may lead to larger raindrops during the melting and collision-coalescence processes.(4)Over all the heights,liquid and ice water content in the WR are higher than those in the SR and FR,the ratio of ice to liquid water content in the WR is as high as 27%when ZH exceeds 50 dBZ,definitely higher than that in the SR and FR,indicating that the active ice-phase process existing in the WR is conducive to the formation of heavy rainfall. 展开更多
关键词 microphysical characteristic S-band polarimetric radar warm-sector heavy rainfall frontal heavy rainfall shear-line heavy rainfall
下载PDF
Observational and Mechanistic Analysis of a Nighttime Warm-Sector Heavy Rainfall Event Within the Subtropical High over the Southeastern Coast of China
3
作者 叶龙彬 朱婧 +2 位作者 谌芸 李菲 郑林晔 《Journal of Tropical Meteorology》 SCIE 2023年第4期448-459,共12页
In August 2021,a warm-sector heavy rainfall event under the control of the western Pacific subtropical high occurred over the southeastern coast of China.Induced by a linearly shaped mesoscale convective system(MCS),t... In August 2021,a warm-sector heavy rainfall event under the control of the western Pacific subtropical high occurred over the southeastern coast of China.Induced by a linearly shaped mesoscale convective system(MCS),this heavy rainfall event was characterized by localized heavy rainfall,high cumulative rainfall,and extreme rainfall intensity.Using various observational data,this study first analyzed the precipitation features and radar reflectivity evolution.It then examined the role of environmental conditions and the relationship between the ambient wind field and convective initiation(CI).Furthermore,the dynamic lifting mechanism within the organization of the MCS was revealed by em-ploying multi-Doppler radar retrieval methods.Results demonstrated that the linearly shaped MCS,developed under the influence of the subtropical high,was the primary cause of the extreme rainfall event.High temperatures and humidity,coupled with the convergence of low-level southerly winds,established the environmental conditions for MCS develop-ment.The superposition of the convergence zone generated by the southerly winds in the boundary layer(925-1000 hPa)and the divergence zone in the lower layer(700-925 hPa)supplied dynamic lifting conditions for CI.Additionally,a long-term shear line(southerly southwesterly)offered favorable conditions for the organization of the linearly shaped MCS.The combined effects of strengthening low-level southerly winds and secondary circulation in mid-upper levels were influential factors in the development and maintenance of the linearly shaped MCS. 展开更多
关键词 linearly shaped MCS warm-sector heavy rainfall convergence/divergence secondary circulation
下载PDF
Comparison of Microphysical Characteristics Between Warm-sector and Frontal Heavy Rainfall in the South of China
4
作者 冯璐 胡胜 +5 位作者 刘显通 黎慧琦 肖辉 李晓惠 赖瑞泽 林青 《Journal of Tropical Meteorology》 SCIE 2023年第1期87-100,共14页
During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and ... During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and FR events from 2016 to 2022 are analyzed by using 2-dimensional video disdrometer(2DVD) data in the south of China.The microphysical characteristics of WR and FR events are quite different.Compared with FR events,WR events have higher concentration of D<5.3 mm(especially D <1 mm),leading to higher rain rates.The mean values of Dmand lgNwof WR events are higher than that of FR events.The microphysical characteristics in different rain rate classes(C1:R~5-20 mm h-1,C2:R~20-50 mm h-1,C3:R~50-100 mm h^(-1),and C4:R> 100 mm h^(-1)) for WR and FR events are also different.Raindrops from C3 contribute the most to the precipitation of WR events,and raindrops from C2 contribute the most to the precipitation of FR events.For C2 and C3,compared with FR events,WR events have higher concentration of D <1 mm and D~3-4.5 mm.Moreover,the shape and slope(μ-A) relationships and the radar reflectivity and rain rate(Z-R) relationships of WR and FR events are quite different in each rain rate class.The investigation of the difference in microphysical characteristics between WR and FR events provide useful information for radar-based quantitative precipitation estimation and numerical prediction. 展开更多
关键词 warm-sector heavy rainfall frontal heavy rainfall raindrop size distribution(DSD) 2-dimensional video disdrometer(2DVD) the south of China
下载PDF
Synoptic Characteristics Related to Warm-Sector Torrential Rainfall Events in South China During the Annually First Rainy Season 被引量:4
5
作者 WU Ya-li GAO Yu-dong +3 位作者 CHEN De-hui MENG Wei-guang LIN Liang-xun LIN Wen-shi 《Journal of Tropical Meteorology》 SCIE 2020年第3期253-260,共8页
Warm-sector torrential rainfall(WSTR)events that occur in the annually first rainy season in south China are characterized by high rainfall intensity and low radar echo centroids.To understand the synoptic characteris... Warm-sector torrential rainfall(WSTR)events that occur in the annually first rainy season in south China are characterized by high rainfall intensity and low radar echo centroids.To understand the synoptic characteristics related to these features,16 WSTR events that occurred in 2013-2017 were examined with another 16 squall line(SL)events occurred during the same period as references.Composite analysis derived from ERA-Interim reanalysis data indicated the importance of the deep layer of warm and moist air for WSTR events.The most significant difference between WSTR and SL events lies in their low-level convergence and lifting;for WSTR events,the low-level convergence and lifting is much shallower with comparable or stronger intensity.The trumpet-shaped topography to the north of the WSTR centers is favorable for the development of such shallow convergences in WSTR events.Results in this study will provide references for future studies to improve the predictability of WSTR. 展开更多
关键词 warm-sector torrential rainfall vertical cross section low-echo centroid shallow convergence trumpetshaped topography
下载PDF
Energy Paths that Sustain the Warm-Sector Torrential Rainfall over South China and Their Contrasts to the Frontal Rainfall: A Case Study 被引量:2
6
作者 Shenming FU Jingping ZHANG +2 位作者 Yali LUO Wenying YANG Jianhua SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1519-1535,共17页
Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key... Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key mechanisms underlying this type of event is the root cause.Since understanding the energetics is crucial to understanding the evolutions of various types of weather systems,a general methodology for investigating energetics of torrential rainfall is provided in this study.By applying this methodology to a persistent torrential rainfall event which had concurrent frontal and warm-sector precipitation,the first physical image on the energetics of the warm-sector torrential rainfall is established.This clarifies the energy sources for producing the warm-sector rainfall during this event.For the first time,fundamental similarities and differences between the warm-sector and frontal torrential rainfall are shown in terms of energetics.It is found that these two types of rainfall mainly differed from each other in the lower-tropospheric dynamical features,and their key differences lay in energy sources.Scale interactions(mainly through downscale energy cascade and transport)were a dominant factor for the warm-sector torrential rainfall during this event,whereas,for the frontal torrential rainfall,they were only of secondary importance.Three typical signals in the background environment are found to have supplied energy to the warm-sector torrential rainfall,with the quasi-biweekly oscillation having contributed the most. 展开更多
关键词 torrential rainfall warm-sector rainfall frontal rainfall South China scale interactions baroclinic energy conversion
下载PDF
ANALYSIS OF MESOSCALE CONVECTIVE SYSTEMS ASSOCIATED WITH A WARM-SECTOR RAINSTORM EVENT OVER SOUTH CHINA 被引量:1
7
作者 张晓美 蒙伟光 +1 位作者 张艳霞 梁建茵 《Journal of Tropical Meteorology》 SCIE 2011年第1期1-10,共10页
With multiple meteorological data, including precipitation from automatic weather stations, integrated satellite-based precipitation (CMORPH), brightness temperature (TBB), radar echoes and NCEP reanalysis, a rainstor... With multiple meteorological data, including precipitation from automatic weather stations, integrated satellite-based precipitation (CMORPH), brightness temperature (TBB), radar echoes and NCEP reanalysis, a rainstorm event, which occurred on May 26, 2007 over South China, is analyzed with the focus on the evolution characteristics of associated mesoscale-β convective systems (Mβcss). Results are shown as follows. (1) The rainstorm presents itself as a typical warm-sector event, for it occurs within a surface inverted trough and on the left side of a southwesterly low-level jet (LLJ), which shows no obvious features of baroclinicity. (2) The heavy rainfall event is directly related to at least three bodies of Mβcss with peak precipitation corresponding well to their mature stages. (3) The Mβcss manifest a backward propagation, which is marked with a new form of downstream convection different from the more usual type of forward propagation over South China, i.e., new convective systems mainly form at the rear part of older Mβcss. (4) Rainstorm-causing Mβcss form near the convergence region on the left side of an 850-hPa southwesterly LLJ, over which there are dominantly divergent air flows at 200 hPa. Different from the typical flow pattern of outward divergence off the east side of South Asia High, which is usually found to be over zones of heavy rains during the annually first rainy season of South China, this warm-sector heavy rain is below the divergence region formed between the easterly and southerly flows west of the South Asian High that is moving out to sea. (5) The LLJ transports abundant amount of warm and moist air to the heavy rainfall area, providing advantageous conditions for highly unstable energy to generate and store at middle and high levels, where corresponding low-level warm advection may be playing a more direct role in the development of Mβcss. As a triggering mechanism for organized convective systems, the effect of low-level warm advection deserves more of our attention. Based on the analysis of surface mesoscale airflow in the article, possible triggering mechanisms for Mβcss are also discussed. 展开更多
关键词 mesoscale analysis warm-sector rainstorm South China rainstorm Mesoscale β
下载PDF
A Review of Research on Warm-Sector Heavy Rainfall in China 被引量:24
8
作者 Jianhua SUN Yuanchun ZHANG +2 位作者 Ruixin LIU Shenming FU Fuyou TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第12期1299-1307,共9页
Warm-sector heavy rainfall (WSHR) events in China have been investigated for many years. Studies have investigated the synoptic weather conditions during WSHR formation, the categories and general features, the trigge... Warm-sector heavy rainfall (WSHR) events in China have been investigated for many years. Studies have investigated the synoptic weather conditions during WSHR formation, the categories and general features, the triggering mechanism, and structural features of mesoscale convective systems during these rainfall events. The main results of WSHR studies in recent years are summarized in this paper. However, WSHR caused by micro- to mesoscale systems often occurs abruptly and locally, making both numerical model predictions and objective forecasts difficult. Further research is needed in three areas:(1) The mechanisms controlling WSHR events need to be understood to clarify the specific effects of various factors and indicate the influences of these factors under different synoptic background circulations. This would enable an understanding of the mechanisms of formation, maintenance, and organization of the convections in WSHR events.(2) In addition to South China, WSHR events also occur during the concentrated summer precipitation in the Yangtze River-Huaihe River Valley and North China. A high spatial and temporal resolution dataset should be used to analyze the distribution and environmental conditions, and to further compare the differences and similarities of the triggering and maintenance mechanisms of WSHR events in different regions.(3) More studies of the mechanisms are required, as well as improvements to the model initial conditions and physical processes based on multi-source observations, especially the description of the triggering process and the microphysical parameterization. This will improve the numerical prediction of WSHR events. 展开更多
关键词 warm-sector heavy RAINFALL SYNOPTIC WEATHER conditions TRIGGERING mechanism SOUTH China
全文增补中
EXPERIMENTS ON ASSIMILATION OF INITIAL VALUES IN NUMERICAL PREDICTION OF A WARM-SECTOR PRECIPITATION IN SOUTH CHINA
9
作者 张诚忠 万齐林 +2 位作者 黄燕燕 陈子通 丁伟钰 《Journal of Tropical Meteorology》 SCIE 2009年第1期73-77,共5页
In order to understand the impact of initial conditions upon prediction accuracy of short-term forecast and nowcast of precipitation in South China, four experiments i.e. a control, an assimilation of conventional sou... In order to understand the impact of initial conditions upon prediction accuracy of short-term forecast and nowcast of precipitation in South China, four experiments i.e. a control, an assimilation of conventional sounding and surface data, testing with nudging rainwater data and the assimilation of radar-derived radial wind, are respectively conducted to simulate a case of warm-sector heavy rainfall that occurred over South China, by using the GRAPES_MESO model. The results show that (1) assimilating conventional surface and sounding observations helps improve the 24-h rainfall forecast in both the area and order of magnitude; (2) nudging rainwater contributes to a significant improvement of nowcast, and (3) the assimilation of radar-derived radial winds distinctly improves the 24-h rainfall forecast in both the area and order of magnitude. These results serve as significant technical reference for the study on short-term forecast and nowcast of precipitation over South China in the future. 展开更多
关键词 South China initial conditions warm-sector precipitation numerical simulation experiment
下载PDF
Impact of EnKF assimilating Himawari-8 all-sky infrared radiance on the forecasting of a warm-sector rainstorm event
10
作者 Shanshan LOU Lei ZHU +3 位作者 Xuexing QIU Guangzhou CHEN Song YUAN Shengnan ZHOU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第10期3110-3127,共18页
Warm-sector rainstorms are highly localized events, with weather systems and triggering mechanisms are not obvious,leading to limited forecasting capabilities in numerical models. Based on the ensemble Kalman filter(P... Warm-sector rainstorms are highly localized events, with weather systems and triggering mechanisms are not obvious,leading to limited forecasting capabilities in numerical models. Based on the ensemble Kalman filter(PSU-En KF) assimilation system and the regional mesoscale model WRF, this study conducted a simulation experiment assimilating all-sky infrared(IR)radiance for a warm-sector rainstorm in East China and investigated the positive impact of assimilating the Himawari-8 moisture channel all-sky IR radiance on the forecast of the rainstorm. Results indicate that hourly cycling assimilation of all-sky IR radiance can significantly improve the forecast accuracy of this warm-sector rainstorm. There is a notable increase in the Threat Score(TS), with the simulated location and intensity of the 3-hour precipitation aligning more closely with observations. These improvements result from the assimilation of cloud-affected radiance, which introduces more mesoscale convective information into the model's initial fields. The adjustments include enhancements to the moisture field, such as increased humidity and moisture transport, and modifications to the wind field, including the intrusion of mid-level cold air and the strengthening of lowlevel convergent shear. These factors are critical in improving the forecast of this warm-sector rainstorm event. 展开更多
关键词 Ensemble Kalman filter WRF model Himawari-8 All-sky radiance warm-sector rainstorm
原文传递
Efficiently Improving Ensemble Forecasts of Warm-Sector Heavy Rainfall over Coastal Southern China: Targeted Assimilation to Reduce the Critical Initial Field Errors
11
作者 Xinghua BAO Rudi XIA +1 位作者 Yali LUO Jian YUE 《Journal of Meteorological Research》 SCIE CSCD 2023年第4期486-507,共22页
Warm-sector heavy rainfall events over southern China are difficult to accurately forecast, due in part to inaccurate initial fields in numerical weather prediction models. In order to determine an efficient way of re... Warm-sector heavy rainfall events over southern China are difficult to accurately forecast, due in part to inaccurate initial fields in numerical weather prediction models. In order to determine an efficient way of reducing the critical initial field errors, this study conducts and compares two sets of 60-member ensemble forecast experiments of a warm-sector heavy rainfall event over coastal southern China without data assimilation(NODA) and with radar radial velocity data assimilation(RadarDA). Yangjiang radar data, which can provide offshore high-resolution wind field information, were assimilated by using a Weather Research and Forecasting(WRF)-based ensemble Kalman filter(EnKF) system. The results show that the speed and direction errors of the southeasterly airflow in the marine boundary layer over the northern South China Sea may primarily be responsible for the forecast errors in rainfall and convection evolution. Targeted assimilation of radial velocity data from the Yangjiang radar can reduce the critical initial field errors of most members, resulting in improvements to the ensemble forecast. Specifically, RadarDA simulations indicate that radial-velocity data assimilation(VrDA) can directly reduce the initial field errors in wind speed and direction, and indirectly and slightly adjust the initial moisture fields in most members, thereby improving the evolution features of moisture transport during the subsequent forecast period. Therefore, these RadarDA members can better capture the initiation and development of convection and have higher forecast skill for the convection evolution and rainfall. The improvement in the deterministic forecasts of most members results in an improved overall ensemble forecast performance. However, VrDA sometimes results in inappropriate adjustment of the initial wind field,so the forecast skill of a few members decreases rather than increases after VrDA. This suggests that a degree of uncertainty remains about the effect of the WRF-based EnKF system. Moreover, the results further indicate that accurate forecasts of the convection evolution and rainfall of warm-sector heavy rainfall events over southern China are challenging. 展开更多
关键词 ensemble forecast targeted assimilation warm-sector heavy rainfall
原文传递
中国雪都阿尔泰山暖区暴雪水汽特征分析
12
作者 周雪英 庄晓翠 +1 位作者 李博渊 储鸿 《气象科技》 2024年第1期76-89,共14页
为进一步做好中国雪都阿勒泰山冬季冰雪旅游暴雪预报预警服务,利用阿尔泰山固态降水数据、NCEP/NCAR再分析和GDAS数据,应用天气学诊断和不同水汽分析方法对2021年阿尔泰山区3次暴雪过程环流背景和水汽特征进行分析。结果表明:①3次暴雪... 为进一步做好中国雪都阿勒泰山冬季冰雪旅游暴雪预报预警服务,利用阿尔泰山固态降水数据、NCEP/NCAR再分析和GDAS数据,应用天气学诊断和不同水汽分析方法对2021年阿尔泰山区3次暴雪过程环流背景和水汽特征进行分析。结果表明:①3次暴雪过程均为新疆北部典型的暖区暴雪过程。②欧拉方法分析表明,该区水汽主要源于大西洋及其沿岸,阿尔泰山西边界为水汽输入,东边界和南边界为水汽输出,中、低层的水汽输入量与暴雪量关系密切,水汽通量散度辐合区位于对流层低层。③HYSPLIT(拉格朗日)方法分析表明,水汽源地主要来自北冰洋、欧洲,其次是中亚和加拿大,与上述结论明显不同;对暴雪区综合贡献较大的是对流层低层的水汽。④构建了阿尔泰山区暴雪过程水汽贡献模型,700 hPa及以上水汽自源地到达关键区后主要从偏西(西南)路径输入暴雪区,700 hPa以下水汽到达关键区后,在环流合适时主要从东南路径输入暴雪区,但从偏西(西南)和西北路径输入暴雪区的水汽也不容忽视;水汽主要在对流层低层聚集,并辐合抬升。 展开更多
关键词 阿尔泰山 暖区暴雪 水汽特征 HYSPLIT模式
下载PDF
Mesoscale Observational Analysis of Lifting Mechanism of a Warm-Sector Convective System Producing the Maximal Daily Precipitation in China Mainland during Pre-Summer Rainy Season of 2015 被引量:52
13
作者 WU Mengwen LUO Yali 《Journal of Meteorological Research》 SCIE CSCD 2016年第5期719-736,共18页
A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme ramtall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolutio... A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme ramtall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective ceils are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature (θe) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher-θe air. The cold outflow is weak (wind speed ≤ 5 m s-1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2-3℃ and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-kin length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h. 展开更多
关键词 pre-summer rainy season of South China coastal warm-sector heavy rainfall mesoscale con- vective system mesoscale boundary convection-generated cold outflow
原文传递
一次复杂地形下边界层抬升型暖区暴雨对流触发条件和可预报性的数值研究
14
作者 徐渊 闵锦忠 +2 位作者 庄潇然 王霄 朱利剑 《大气科学》 CSCD 北大核心 2024年第3期1095-1112,共18页
长江中下游地区的暖区暴雨过程易受复杂下垫面强迫的影响,具有较大的预报不确定性,尤其是其中的对流触发过程。为探讨此类过程的触发条件及揭示其可预报性受限制程度,本文针对2020年6月23日一次复杂地形包裹下的长江中下游暖区暴雨展开... 长江中下游地区的暖区暴雨过程易受复杂下垫面强迫的影响,具有较大的预报不确定性,尤其是其中的对流触发过程。为探讨此类过程的触发条件及揭示其可预报性受限制程度,本文针对2020年6月23日一次复杂地形包裹下的长江中下游暖区暴雨展开高分辨率的数值模拟和对流尺度集合模拟,通过Lagrange气块后向轨迹分析、去除地形和关闭热效应的敏感性试验以及集合敏感性分析等方法对此次过程的对流触发阶段展开分析。结果表明,此次过程被抬升气块的主要源地为1.5 km以下的边界层,仙霞岭和杉岭在正午时分因热力作用而驱动的出谷风是引发局地辐合抬升的动力源,高低层散度、湿位涡的垂直配置以及偶极型位涡异常对此次对流触发过程具有较好的指示意义。此外,该过程对前期近地面2 m高度处温度和模式底层视热源具有较高的敏感性,该结果证实下垫面强迫的精确刻画对于提升暖区暴雨的预报效果至关重要。逐步减小初始场误差的初值敏感性试验进一步表明,此次暖区对流过程的可预报性显著低于北边的锋面过程,表现为锋面对流的偏差总能量能随初始误差的缩小持续性降低,而暖区对流的偏差总能量曲线则仍能增长至与原水平相近,呈现出非线性辐合收缩特征。因此,对于天气尺度强迫显著的锋面对流,或可优先考虑通过加强资料同化能力等手段降低初始场误差来减小预报误差;但对于复杂地形下的暖区暴雨对流触发过程,则需要更加强调通过集合预报来捕捉其不确定性。 展开更多
关键词 暖区暴雨 对流触发 复杂地形 对流尺度集合模拟 可预报性
下载PDF
Organized Warm-Sector Rainfall in the Coastal Region of South China in an Anticyclone Synoptic Situation:Observational Analysis 被引量:2
15
作者 Zhaoming LIANG Shouting GAO 《Journal of Meteorological Research》 SCIE CSCD 2021年第3期460-477,共18页
Organized warm-sector rainfall(OWSR)near the coast of South China tends to occur in certain synoptic situations characterized with either a low-level jet or an anticyclone,with the latter being less investigated.This ... Organized warm-sector rainfall(OWSR)near the coast of South China tends to occur in certain synoptic situations characterized with either a low-level jet or an anticyclone,with the latter being less investigated.This paper fills the gap by analyzing 15 OWSR events that occurred in an anticyclone synoptic situation during the pre-summer rainy season of 2011-2016,based on high-resolution observational and reanalysis data.The results show that the anticyclone synoptic situation produces marked northerly boundary-layer winds inland and obvious northeasterly,easterly/southwesterly,and southeasterly boundary-layer winds near the coasts of eastern Guangdong,western Guangdong,and Guangxi,respectively.The coastal boundary-layer winds promote favorable environmental conditions and strong convergence for convection initiation;consequently,OWSR is prone to occur near the coasts of western Guangdong and Guangxi,but exhibits different formation and propagation features in the following two subareas.(1)The southeasterly boundary-layer winds tend to converge near the border area between Guangxi and Guangdong(BGG),promoting the formation of a stable convective line along the mountains.The convective line persists with support of upper-level southwesterly winds that facilitate convective cells to propagate along the convective line,producing heavy OWSR along the mountains near BGG.(2)In contrast,a west-east convective line tends to form and maintain near the coast of Yangjiang(YJ)area,about 200 km east of BGG,owing to stable convergence between the easterly(or southwesterly)and the northerly boundary-layer winds reinforced by the mountains near YJ.Moreover,the coupling of upper-level westerly winds with the easterly(southwesterly)boundary-layer winds facilitates expansion(eastward propagation)of the convective line,causing west-east-oriented heavy OWSR near the coast of YJ.In a word,this study reveals refined properties of OWSR initiation and development in the anticyclone synoptic situation,which may help improve the forecast skill of OWSR during the pre-summer rainy season in South China. 展开更多
关键词 organized warm-sector rainfall(OWSR) anticyclone synoptic situation formation South China
原文传递
山东一次低涡切变型暖区暴雨大范围漏报原因
16
作者 张萍萍 林修栋 张宁 《气象》 CSCD 北大核心 2024年第8期953-965,共13页
低涡切变型暖区暴雨预报是山东省暴雨预报中的一个难点问题,2021年8月30—31日山东中部及半岛地区出现大范围暖区暴雨天气,主观预报强度偏弱,范围偏小,暴雨出现大范围漏报。本文利用常规数值模式资料、地面观测资料、雷达资料等对漏报... 低涡切变型暖区暴雨预报是山东省暴雨预报中的一个难点问题,2021年8月30—31日山东中部及半岛地区出现大范围暖区暴雨天气,主观预报强度偏弱,范围偏小,暴雨出现大范围漏报。本文利用常规数值模式资料、地面观测资料、雷达资料等对漏报原因进行回顾,结果表明:对大气综合稳定度特征、边界层暖锋锋生特征、超低空急流、低空急流与高空急流垂直相互作用,以及边界层和中层弱冷空气的作用判断不够全面,在环境场已经发生变化的情况下,仍然用前期短时间内模式检验结果作为未来模式降水订正的依据等,可能是导致此次暖区暴雨过程预报不足的主要原因;在今后类似预报中应全面分析条件不稳定、对流不稳定和对称不稳定特征,关注边界层假相当位温密集带和边界层暖锋锋生特征,考虑急流垂直三维结构以及不同高度弱冷空气的作用,并应依据环境场的变化特征,判断数值模式暴雨预报性能,进行合理的动态订正。 展开更多
关键词 暖区暴雨 预报偏差 对称不稳定 暖锋锋生 模式订正
下载PDF
大气河背景下的广西暖区暴雨机理初探
17
作者 覃皓 覃月凤 +2 位作者 吴玉霜 王志毅 刘乐 《高原气象》 CSCD 北大核心 2024年第2期381-397,共17页
利用多源实况观测资料以及ERA5再分析资料对2010-2022年夏季(6-8月)广西暖区暴雨个例中伴随大气河的特征进行统计分析,并基于波作用通量、水平锋生以及非绝热加热诊断等,从热力、动力角度分析了2022年6月2-4日大气河背景下广西典型暖区... 利用多源实况观测资料以及ERA5再分析资料对2010-2022年夏季(6-8月)广西暖区暴雨个例中伴随大气河的特征进行统计分析,并基于波作用通量、水平锋生以及非绝热加热诊断等,从热力、动力角度分析了2022年6月2-4日大气河背景下广西典型暖区暴雨过程。结果表明:(1)绝大多数暖区暴雨个例伴随大气河。当大气河通过广西区域并维持在约1000 kg·m^(-1)·s^(-1)以下时,大气河强度增强有利于暖区暴雨降水强度增强。大多数个例中大气河呈西南-东北向,在经过广西时方向角在15°~65°。(2)典型个例中东西伯利亚阻塞高压和东北冷涡异常活跃,造成副高总体被压制,位置偏南,使得大气河维持在孟加拉湾-南海-华南-北热带太平洋一带,为暖区暴雨发生发展提供充足水汽。副高维持而低涡东移造成的气压梯度增大以及夜间季风气流加速共同作用使得局地大气河增强。(3)大气河夜间增强促进了局地水汽辐合及垂直输送使得湿层不断增厚,大气可降水量增大,有利于降水效率增大。同时,持续的暖湿输送有利于低层不稳定层结的建立和维持,使大气对流不稳定结构贯穿整个降水过程。(4)山脉地形的辐合抬升、侧向摩擦促进了上升运动、垂直涡度发展,一方面有利于山前堆积的暖湿空气被迫抬升而触发对流,另一方面有利于对流系统维持,造成更多水汽凝结致雨。此外,暖湿空气堆积产生持续的锋生强迫也有利于降水维持和增强。(5)大气河影响下的强上升造成大量水汽不断凝结释放潜热,大气受热后又加强了上升运动,在该正反馈机制下对流持续发展增强。 展开更多
关键词 暖区暴雨 大气河 对流不稳定 潜热
下载PDF
一次弱天气背景下浙江局地暖区暴雨成因分析
18
作者 沈晓玲 冯博 +1 位作者 李锋 徐一平 《气象》 CSCD 北大核心 2024年第2期170-180,共11页
利用多源观测资料及ERA5(0.25°×0.25°)再分析资料,对2021年6月9日夜里浙江首场梅汛期局地暖区暴雨的降水成因进行了诊断分析。结果表明:此次过程环流形势与典型梅雨完全不同,属于弱天气背景下的局地暖区暴雨;南海低压和... 利用多源观测资料及ERA5(0.25°×0.25°)再分析资料,对2021年6月9日夜里浙江首场梅汛期局地暖区暴雨的降水成因进行了诊断分析。结果表明:此次过程环流形势与典型梅雨完全不同,属于弱天气背景下的局地暖区暴雨;南海低压和西太平洋副热带高压之间东南气流的维持,为暴雨区提供充沛的水汽来源,925 hPa超低空偏南风急流的加强有利于低层增温增湿,不稳定层结加剧,暴雨区位于急流轴左侧;整层高湿背景及较低的自由对流高度导致的弱抬升条件就能触发对流,中高层气旋性辐合旋转加强使暴雨加强,较厚的暖云层有利于提高降水效率;地面中尺度辐合带的生成激发了初始对流,其维持和加强不断激发对流云团生成,产生列车效应,导致暴雨形成。龙门山小尺度地形有利于东南气流在迎风坡强迫抬升,对流加强,且垂直速度的发展程度与地形有较好的对应关系,地形高度越高,激发的垂直速度越强。 展开更多
关键词 暖区 弱天气背景 超低空急流 地形
下载PDF
华南前汛期珠江流域两类暖区飑线特征分析
19
作者 张小雯 盛杰 +3 位作者 滑申冰 郑永光 刘鑫华 麦子 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期5-12,21,共9页
利用2016—2019年4—6月雷达三维拼图资料,根据触发条件的差异,划分华南前汛期暖区飑线为锋面触发暖区发展(Ⅰ型暖区飑线)与暖区触发并发展(Ⅱ型暖区飑线)两类;在此基础上针对飑线造成短时强降水和雷暴大风的分布,对比了飑线发生时的大... 利用2016—2019年4—6月雷达三维拼图资料,根据触发条件的差异,划分华南前汛期暖区飑线为锋面触发暖区发展(Ⅰ型暖区飑线)与暖区触发并发展(Ⅱ型暖区飑线)两类;在此基础上针对飑线造成短时强降水和雷暴大风的分布,对比了飑线发生时的大尺度环境条件和中尺度雷达回波特征。结果表明:Ⅰ型暖区飑线大多形成于平原地区,Ⅱ型暖区飑线大多生成于山脉迎风坡和海岸线;两类飑线发生时均伴有明显的短时强降水,易造成暴雨洪涝;Ⅰ型暖区飑线易产生区域性雷暴大风,Ⅱ型暖区飑线产生分散性雷暴大风;Ⅰ型暖区飑线生命史长,对流发展更旺盛,飑线移动速度快;Ⅱ型暖区飑线生命史短,飑线移动速度慢,回波强度弱于Ⅰ型暖区飑线;两类飑线都有较好的水汽条件和0~3 km低层风垂直切变条件,Ⅰ型暖区飑线发生时动力和热力条件更好。 展开更多
关键词 珠江流域 暖区飑线 华南前汛期 空间分布 中尺度特征 环境参数
下载PDF
2012—2021年湘南暖区暴雨特征分析
20
作者 周宜卿 宋楠 +2 位作者 周长青 唐明晖 袁韬 《热带气象学报》 CSCD 北大核心 2024年第3期425-435,共11页
基于2012—2021年3—9月66个暖区暴雨个例,利用地面、高空等常规资料及再分析数据,分析了湘南地区暖区暴雨的时空分布特征,分冷锋前暖区型、南风型和暖切变暖区型三类建立天气学概念模型,并提取暴雨发生前各物理量指标,结果表明:(1)湘... 基于2012—2021年3—9月66个暖区暴雨个例,利用地面、高空等常规资料及再分析数据,分析了湘南地区暖区暴雨的时空分布特征,分冷锋前暖区型、南风型和暖切变暖区型三类建立天气学概念模型,并提取暴雨发生前各物理量指标,结果表明:(1)湘南暖区暴雨年变化呈现波动增长趋势,日变化峰值出现在19—22时,5月范围最广,6月次数最多,日雨量极值最大,7—9月局地性强;(2)南风型占比和日雨量极值最大,暖切变暖区型次之,冷锋前暖区型最小,三种类型分别多发于4—6月、5—8月和6—7月;(3)冷锋前暖区型、暖切变暖区型短时强降水(小时雨量≥20 mm)日变化较剧烈,南风型略平缓;(4)湘南暖区暴雨发生的高频区与南岭、罗霄山脉和阳明山地形分布息息相关,东江湖对暖区暴雨也有增幅作用,冷锋前暖区型更易发生在西南部的喇叭口地形处,暖切变暖区型集中于南部南岭迎风坡和不均匀下垫面附近,南风型发生点较分散;(5)湘南暖区暴雨的主要影响系统是高空低槽、低空和超低空急流、地面倒槽和辐合线,另外200 hPa分流区、850 hPa暖脊和显著湿区以及地形作用对降水起到增幅效果;(6)700 hPa、850 hPa、925 hPa急流分别对冷锋前暖区型、暖切变暖区型和南风型暖区暴雨的水汽输送起重要作用;(7)湘南暖区暴雨发生前各物理量平均值显示,q_(850)(850 hPa比湿)≥13 g·kg^(-1),CAPE(对流有效位能)≥1100 J·kg^(-1),K指数≥37℃,SI(沙氏指数)≤-1.5,T_(850-500)(850 hPa与500 hPa温差)≥23℃,LCL(抬升凝结高度)在0.6~0.9 km间,0℃层高度在4.9~5.1 km间,0~6 km的垂直风切变在10~16 J·kg^(-1)间。 展开更多
关键词 暖区暴雨 湘南地区 天气学概念模型 物理量指标
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部