The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined u...The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.展开更多
文摘The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.