为提升商用车的行驶安全性,本文基于触摸屏式新型人机交互系统,对商用车电控空气悬架(electronically controlled air suspension,ECAS)系统的故障诊断系统进行研究。针对ECAS故障诊断系统总体架构,提出了ECAS故障诊断及故障保护机制,...为提升商用车的行驶安全性,本文基于触摸屏式新型人机交互系统,对商用车电控空气悬架(electronically controlled air suspension,ECAS)系统的故障诊断系统进行研究。针对ECAS故障诊断系统总体架构,提出了ECAS故障诊断及故障保护机制,阐述了典型ECAS故障实例的诊断策略,并采用Matlab/Simulink搭建了诊断策略模型和故障码生成模型。为验证本文所提出的故障诊断及故障保护机制的可行性与实用性,以ECAS系统中压力传感器为例,对模型进行仿真分析和硬件在环试验。试验结果表明,在典型压力传感器故障工况下,本文所提出的ECAS故障诊断及故障保护机制,能够准确检测出相应故障,正确输出一系列相关信号,并在人机交互系统上将诊断结果进行实时显示。该研究对商用车ECAS人机交互系统的故障诊断系统设计开发具有一定的参考价值。展开更多
文摘为提升商用车的行驶安全性,本文基于触摸屏式新型人机交互系统,对商用车电控空气悬架(electronically controlled air suspension,ECAS)系统的故障诊断系统进行研究。针对ECAS故障诊断系统总体架构,提出了ECAS故障诊断及故障保护机制,阐述了典型ECAS故障实例的诊断策略,并采用Matlab/Simulink搭建了诊断策略模型和故障码生成模型。为验证本文所提出的故障诊断及故障保护机制的可行性与实用性,以ECAS系统中压力传感器为例,对模型进行仿真分析和硬件在环试验。试验结果表明,在典型压力传感器故障工况下,本文所提出的ECAS故障诊断及故障保护机制,能够准确检测出相应故障,正确输出一系列相关信号,并在人机交互系统上将诊断结果进行实时显示。该研究对商用车ECAS人机交互系统的故障诊断系统设计开发具有一定的参考价值。