Combining the characteristics of the black pulping liquor that contains a lot of lignin and other biomass resources, the technology of comprehensive waste utilization is employed. The reconstructive preparation of mod...Combining the characteristics of the black pulping liquor that contains a lot of lignin and other biomass resources, the technology of comprehensive waste utilization is employed. The reconstructive preparation of modified urea-formaldehyde glue by adding black pulping liquor and the application in extruding the medium density fibre board using this modified urea-formaldehyde glue is researched. Results show that when applying the preparation technology that alkaline reaction and then weak acid reaction, the appropriate preparation process is as follows: the adding urea process is divided into three stages (proportion 2 : 1 : 1) ; the pH value is 8.0, and the reaction time is 40 min in the addition reaction stage; the pH value will be naturally reduced to 3.5 -5.0, and the reaction time is 45 min in the aggregation reaction stage; the pH value is 8.0 in the urea complement stage. And the optimal condition of the reconstructive preparation the modified ureaformaldehyde glue is adding the condensed black pulping liquor after hydroxymethylation in the beginning of polycondensation reaction by 5% proportion. The application in extruding medium density fibre board with this modified urea-fosmaldehyde glue is proved feasible.展开更多
Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection...Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection of waste slag yard of water diversion project and design of water and soil conservation measures are discussed.Rationality of site selection of waste slag yard and pertinence of prevention and control measures of water and soil loss in waste slag yard are analyzed,and comprehensive utilization of waste slag in large-scale production and construction projects is explored.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation(20060013)
文摘Combining the characteristics of the black pulping liquor that contains a lot of lignin and other biomass resources, the technology of comprehensive waste utilization is employed. The reconstructive preparation of modified urea-formaldehyde glue by adding black pulping liquor and the application in extruding the medium density fibre board using this modified urea-formaldehyde glue is researched. Results show that when applying the preparation technology that alkaline reaction and then weak acid reaction, the appropriate preparation process is as follows: the adding urea process is divided into three stages (proportion 2 : 1 : 1) ; the pH value is 8.0, and the reaction time is 40 min in the addition reaction stage; the pH value will be naturally reduced to 3.5 -5.0, and the reaction time is 45 min in the aggregation reaction stage; the pH value is 8.0 in the urea complement stage. And the optimal condition of the reconstructive preparation the modified ureaformaldehyde glue is adding the condensed black pulping liquor after hydroxymethylation in the beginning of polycondensation reaction by 5% proportion. The application in extruding medium density fibre board with this modified urea-fosmaldehyde glue is proved feasible.
文摘Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection of waste slag yard of water diversion project and design of water and soil conservation measures are discussed.Rationality of site selection of waste slag yard and pertinence of prevention and control measures of water and soil loss in waste slag yard are analyzed,and comprehensive utilization of waste slag in large-scale production and construction projects is explored.