期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Preparation of Pure Copper Powder from Acidic Copper Chloride Waste Etchant
1
作者 H.S.Hong M.S.Kong +2 位作者 J.K.Ghu J.K.Lee H.G.Suk 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期141-142,共2页
The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps we... The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder. Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling. 展开更多
关键词 Copper chloride liquid waste Printed circuit board (PCB) Liquid waste Highpurity copper powder
下载PDF
A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy 被引量:2
2
作者 Zebing Wu Wenyi Yuan +3 位作者 Jinhui Li Xiaoyan Wang Lili Liu Jingwei Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第5期33-46,共14页
Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circ... Currently, increasing amounts of end-of-life (EoL) electronic products are being generated due to their reduced life spans and the unavailability of suitable recycling technologies. In particular, waste printed circuit boards (PCBs) have become of global concern with regard to environmental issues because of their high metal and toxic material contents, which are pollutants. There are many environmental threats owed to the disposal of electronic waste; off-gasses, such as dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons, can be generated during thermal treatments. which can cause serious health problems if effective off=gas cleaning systems are not developed and improved. Moreover, heavy metals will dissolve, and release into the ground water from the landfill sites. Such waste PCBs contain precious metals which are of monetary value. Therefore, it is beneficial to recover the metal content and protect the environment from pollution. Hydrometallurgy is a successful technique used worldwide for the recovery of precious metals (especially gold and silver) from ores, concentrates, and waste materials. It is generally preferred over other methods because it can offer high recovery rates at a relatively low cost. This article reviews the recent trends and developments with regard to the recycling of precious metals from waste PCBs through hydrometallurgical techniques, such as leaching and recovery. 展开更多
关键词 waste pcbs Precious metals Hydrometallurgy Recycling Leaching Recovery
原文传递
Preparation of pure SnO_2 powders from tin slag of printed circuit boards waste 被引量:2
3
作者 Bin Li Shen-Gen Zhang +3 位作者 Kun Zhang De-An Pan Jian-Jun Tian Duan-Ting Zhang 《Rare Metals》 SCIE EI CAS CSCD 2014年第6期749-753,共5页
The recycling method and principle of SnO2 from the tin slag of printed circuit boards(PCB) waste were investigated. In this study, pure SnO2 powders were obtained through a multi-step process including ball-milling... The recycling method and principle of SnO2 from the tin slag of printed circuit boards(PCB) waste were investigated. In this study, pure SnO2 powders were obtained through a multi-step process including ball-milling, roasting, dissolving, precipitating, and pickling. The total recovery rate of tin can be up to 91 %. The SnO2 powders obtained is the single phase, and the content of SnO2 is up to 99.9 %. However, the SnO2 particles are easier to agglomerate during the precipitation process. The agglomerate SnO2 particles are about 7.778 lm in mean particle size(D50). This preparation method presents a viable alternative for the tin slag recycling. The tin is not only recycled, but also reused directly to prepare pure SnO2 powders. 展开更多
关键词 SNO2 Tin slag Printed circuit boards(PCB) waste
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部