Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining co...Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining consistent steam production and high operational costs.This article capitalizes on the technical advantages of big data artificial intelligence,optimizing the power generation process of domestic waste incineration as the entry point,and adopts four main engine modules of Alibaba Cloud reinforcement learning algorithm engine,operating parameter prediction engine,anomaly recognition engine,and video visual recognition algorithm engine.The reinforcement learning algorithm extracts the operational parameters of each incinerator to obtain a control benchmark.Through the operating parameter prediction algorithm,prediction models for drum pressure,primary steam flow,NOx,SO2,and HCl are constructed to achieve short-term prediction of operational parameters,ultimately improving control performance.The anomaly recognition algorithm develops a thickness identification model for the material layer in the drying section,allowing for rapid and effective assessment of feed material thickness to ensure uniformity control.Meanwhile,the visual recognition algorithm identifies flame images and assesses the combustion status and location of the combustion fire line within the furnace.This real-time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume.Integrating AI technology into the waste incineration sector empowers the environmental protection industry with the potential to leverage big data.This development holds practical significance in optimizing the harmless and resource-oriented treatment of urban domestic waste,reducing operational costs,and increasing efficiency.展开更多
Chinese government has initiated many preferential policies for supporting the circular economy, including the industry of municipal solid waste (MSW) power generation. This paper collects relevant policies for Chin...Chinese government has initiated many preferential policies for supporting the circular economy, including the industry of municipal solid waste (MSW) power generation. This paper collects relevant policies for China's MSW power generation. It also analyzes the overall environment of policies for the MSW power generation from three aspects---the basic principles for China to develop MSW power generation, the operating mechanism and the specific preferential policies. The analysis establishes foundation for further research toward policy integration.展开更多
Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landf...Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landfill, supplemented by burning. However, with the accelerated process of urbanization, land resources are increasingly strained and most large cities have been unable to find a suitable landfill within the feasible urban extent, the main equipment for the incinerator and the localization of the overall process greatly reduced its capital investment and these factors will promote the rapid development of waste incineration power generation industry. Waste incineration and power generation technology has the dual benefits of environmental protection and energy and it is the development direction of waste disposal in the future. According to the condition that our country's waste incineration power generation started from scratch and developed rapidly in recent years ,there is a introduction about the application of the waste incineration and a brief analysis of the its obstacles in the promotion and financing, as well as the potential for future applications.展开更多
The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to...The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to build and operate.These methods all need to transfer and centralized treatment,and secondary pollution is difficult to control,against the purification law of the nature."NIMBY effect"is very serious,and the social cost of treatment is increasing,becoming a heavy financial burden."The Distributed Waste Pyrolysis Cold Emission Energy Station"developed by Hunan Zhongzhou Energy-Saving Technology Co.,Ltd.overcomes these disadvantages and constructs a more appropriate environmental economic industrial chain for the treatment of organic solid waste such as urban and rural household waste.Based on its technical characteristics,this paper compares it with waste incineration power generation project in the aspects of secondary pollution control,treatment effect,energy utilization,investment and operation economy,etc.展开更多
文摘Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining consistent steam production and high operational costs.This article capitalizes on the technical advantages of big data artificial intelligence,optimizing the power generation process of domestic waste incineration as the entry point,and adopts four main engine modules of Alibaba Cloud reinforcement learning algorithm engine,operating parameter prediction engine,anomaly recognition engine,and video visual recognition algorithm engine.The reinforcement learning algorithm extracts the operational parameters of each incinerator to obtain a control benchmark.Through the operating parameter prediction algorithm,prediction models for drum pressure,primary steam flow,NOx,SO2,and HCl are constructed to achieve short-term prediction of operational parameters,ultimately improving control performance.The anomaly recognition algorithm develops a thickness identification model for the material layer in the drying section,allowing for rapid and effective assessment of feed material thickness to ensure uniformity control.Meanwhile,the visual recognition algorithm identifies flame images and assesses the combustion status and location of the combustion fire line within the furnace.This real-time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume.Integrating AI technology into the waste incineration sector empowers the environmental protection industry with the potential to leverage big data.This development holds practical significance in optimizing the harmless and resource-oriented treatment of urban domestic waste,reducing operational costs,and increasing efficiency.
文摘Chinese government has initiated many preferential policies for supporting the circular economy, including the industry of municipal solid waste (MSW) power generation. This paper collects relevant policies for China's MSW power generation. It also analyzes the overall environment of policies for the MSW power generation from three aspects---the basic principles for China to develop MSW power generation, the operating mechanism and the specific preferential policies. The analysis establishes foundation for further research toward policy integration.
文摘Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landfill, supplemented by burning. However, with the accelerated process of urbanization, land resources are increasingly strained and most large cities have been unable to find a suitable landfill within the feasible urban extent, the main equipment for the incinerator and the localization of the overall process greatly reduced its capital investment and these factors will promote the rapid development of waste incineration power generation industry. Waste incineration and power generation technology has the dual benefits of environmental protection and energy and it is the development direction of waste disposal in the future. According to the condition that our country's waste incineration power generation started from scratch and developed rapidly in recent years ,there is a introduction about the application of the waste incineration and a brief analysis of the its obstacles in the promotion and financing, as well as the potential for future applications.
文摘The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to build and operate.These methods all need to transfer and centralized treatment,and secondary pollution is difficult to control,against the purification law of the nature."NIMBY effect"is very serious,and the social cost of treatment is increasing,becoming a heavy financial burden."The Distributed Waste Pyrolysis Cold Emission Energy Station"developed by Hunan Zhongzhou Energy-Saving Technology Co.,Ltd.overcomes these disadvantages and constructs a more appropriate environmental economic industrial chain for the treatment of organic solid waste such as urban and rural household waste.Based on its technical characteristics,this paper compares it with waste incineration power generation project in the aspects of secondary pollution control,treatment effect,energy utilization,investment and operation economy,etc.