The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps we...The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder. Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling.展开更多
文摘The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder. Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling.
文摘为了确定纸基印刷线路板非金属粉与环氧树脂体系的最佳固化工艺条件,采用差示扫描量热法(DSC)对环氧树脂(EP体系)、非金属粉/环氧树脂复合材料(NM-EP体系)和KH-550改性非金属粉/环氧树脂复合材料(K-NM-EP体系)的固化过程进行研究.结果表明:加入纸基印刷线路板非金属粉对各体系的固化反应过程有影响,使表观活化能提高,但不影响固化反应历程;动力学计算得到EP、NM-EP和K-NM-EP体系的最佳起始固化温度分别为333.15、353.15和343.15 K,后处理温度分别为453.15、423.15和393.15 K,固化温度均为373.15 K.