This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and...This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.展开更多
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current ...Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current research only focuses on landfill leachates,and the occurrence of MPs in other leachates has not been studied.Therefore,herein,the abundance and characteristics of MPs in three types of leachates,namely,landfill leachate,residual waste leachate,and household food waste leachate,were studied,all leachates were collected from the largest waste disposal center in China.The results showed that the average MP abundances in the different types of leachates ranged from(129±54)to(1288±184)MP particles per liter(particlesL1)and the household food waste leachate exhibited the highest MP abundance(p<0.05).Polyethylene(PE)and fragments were the dominant polymer type and shape in MPs,respectively.The characteristic polymer types of MPs in individual leachates were different.Furthermore,the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates,leading to a higher percentage(>80%)of small MPs(20–100 lm)in landfill leachates compared to other leachates.To the best of our knowledge,this is the first study discussing the sources of MPs in different leachates,which is important for MP pollution control during MSW disposal.展开更多
The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar...The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.展开更多
Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challeng...Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challenge compared to traditional methods.In this study,we present a facile method for the recovery of molybdenum and aluminum contents from spent Mo-Ni/Al_(2)O_(3) hydrogenation catalysts through crystallization separation and coprecipitation.Furthermore,the recovered molybdenum and aluminum are utilized as active metals and carriers for the preparation of new catalysts.Their properties were thoroughly analyzed and investigated using various characterization techniques.The hydrogenation activity of these newly prepared catalysts was evaluated on a fixed-bed small-scale device and compared with a reference catalyst synthesized from commercial raw reagents.Finally,the hydrogenation activity of the catalysts was further assessed by using the entire distillate oil of coal liquefaction as the raw oil,specifically focusing on denitrogenation and aromatic saturation.This work not only offers an effective solution for recycling catalysts but also promotes sustainable development.展开更多
The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains...The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed.展开更多
To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study invest...To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively.展开更多
A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and envir...A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and environmentally friendly waterborne polyurethane as the matrix material and humic acid,a biomass material,as the functional material.The newly synthesized adsorbents were characterized by infrared spectroscopy,scanning electron microscopy,specific surface area,and thermogravimetric.The effects of contact time(0-8 h),starting concentration(10-100 mg·L^(-1)),pH(3-11),solution temperature(30-60℃),and coexisting ions(Ca2+,Na+,K+,Mg2+)on the performance were investigated.Pseudo-first-order,pseudo-second-order,elovich,and intra-particle diffusion models were used to analyze the adsorption kinetics;the Langmuir,Freundlich,Temkin,and Dubin-Radushkovich adsorption isotherms were evaluated;and the adsorption behavior of the adsorbent materials was found to be more appropriate for the pseudo-second-order model for chemical pollutant removal than the Langmuir model,which depends on monolayer adsorption.WPU-HA2-3 stood out with a maximum adsorption capacity of 813.0081 mg·g^(-1) fitted to the pseudo-second-order and 309.2832 mg·g^(-1) fitted to the Langmuir model,showing superior adsorption performance and regenerability.展开更多
Mechanical pretreatment is an indispensable process in biological treatment plants that remove plastics and other impurities from household biogenic waste(HBW).However,the imperfect separation of plastics in these pre...Mechanical pretreatment is an indispensable process in biological treatment plants that remove plastics and other impurities from household biogenic waste(HBW).However,the imperfect separation of plastics in these pretreatment methods has raised concerns that they pose a secondary formation risk for microplastics(MPs).To validate this presumption,herein,quantities and properties of plastic debris and MPs larger than 50 μm were examined in the full chain of three different pretreatment methods in six plants.These facilities received HBW with or without prior depackaging at the source.The key points in the secondary formation of MPs were identified.Moreover,flux estimates of MPs were released,and an analysis of MPs sources was provided to develop an overview of their fate in HBW pretreatment.Pretreated output can contain a maximum of(1673±279) to(3198±263) MP particles per kilogram of wet weight(particles·kg^(-1)ww) for those undepackaged at source,and secondary MPs formation is primarily attributed to biomass crushers,biohydrolysis reactors,and rough shredders.Comparatively,HBW depackaged at the source can greatly reduce MPs by 8%-72%,regardless of pretreatment processes.Before pretreatment,4.6-205.6 million MP particles were present in 100 tonnes of HBW.MPs are produced at a rate of 741.11-33124.22 billion MP particles annually in anaerobic digester feedstock(ADF).This study demonstrated that HBW pretreatment is a competitive source of MPs and emphasized the importance of implementing municipal solid waste segregation at the source.Furthermore,depackaging biogenic waste at the source is recommended to substantially alleviate the negative effect of pretreatment on MPs formation.展开更多
It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclode...It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclodextrin polymers(diethylenetriamine β-cyclodextrin polymer(DETA-TFCDP) and triethylenetetramine β-cyclodextrin polymer(TETA-TFCDP)) were prepared and applied to capture uranium. Results exhibited that DETA-TFCDP and TETA-TFCDP displayed the advantages of high adsorption amounts(612.2and 628.2 mg·g-1, respectively) and rapid adsorption rates, which can reach(88 ± 1)% of their equilibrium adsorption amounts in 10 min. Moreover, the adsorbent processes of DETA-TFCDP and TETATFCDP on uranium(Ⅵ) followed the Langmuir model and pseudo-second-order model, stating they were mainly chemisorption and self-endothermic. Besides, TETA-TFCDP also showed excellent selectivity in the presence of seven competing cations and could be effectively reused five times via Na2CO3as the desorption reagent. Meanwhile, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy illustrated that the enriched multi-amine groups and oxygen-containing functional groups on the surface of TETA-TFCDP were the main active sites for capturing uranium(Ⅵ). Hence, multi-amine β-cyclodextrin polymers are a highly efficient, rapid, and promising adsorbent for capturing uranium(Ⅵ)from radioactive wastewater.展开更多
The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl...The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.展开更多
The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems ca...The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.展开更多
During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas d...During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas.展开更多
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling...Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.展开更多
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s...We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.展开更多
Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed ...Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed in this work.This innovative process raised the fluor-ite’s grade to 97.26wt%while producing nanoscale calcium carbonate from its leachate,which contained plenty of calcium ions.On the production of nanoscale calcium carbonate,the impacts of concentration,temperature,and titration rate were examined.By modifying the process conditions and utilizing crystal conditioning agents,calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511μm were produced.The influence of the impurity ions Mn^(2+),Mg^(2+),and Fe^(3+)was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution.The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources,thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles.展开更多
The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources.Consequently,many researchers are seeking alternative energy sou...The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources.Consequently,many researchers are seeking alternative energy sources.One potential technology,the Microbial Fuel Cell(MFC)based on rice,vegetable,and fruit wastes,can convert chemical energy into electrical energy.This study aims to determine the potency of rice,vegetable,and fruit waste assisted by Cu/Mg electrodes as a generator of electricity.The method used was a laboratory experiment,including the following steps:electrode preparation,waste sample preparation,incubation of the waste samples,construction of a reactor using rice,vegetable,and fruit waste as a source of electricity,and testing.The tests included measuring electrical conductivity,electric current,voltage,current density,and power density.Based on the test results,the maximum current and voltage values for the fruit waste samples were 5.53 V and 11.5 mA,respectively,with a current density of 2.300 mA/cm^(2) and a power density of 12.719 mW/cm^(2).The results indicate the potential for a future development.The next step in development involves determining the optimum conditions for utilizing of rice,vegetable,and fruit waste.The results of the electrical conductivity test on rice,vegetable,and fruit waste samples were 1.51,2.88,and 3.98 mS,respectively,with the highest electrical conductivity value found in the fruit waste sample.展开更多
Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious an...Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.展开更多
Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of ...Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of a low-permeability soil layer underlying a two-layer capillary barrier for humid climates.First,the numerical back-analysis was conducted for verification against a series of flume model tests.Then,a parametric study was performed to investigate the effects of inclination angle,particle size and layer thickness on the lateral diversion length(DL)of the three-layer cover system under the 100-year return period rainfall of humid climates.The results show that the water lateral DL of the cover system can be greatly enhanced by increasing the inclination angle from 3°to 18°.Moreover,the bottom layer of the cover system with a coarser d10 was more susceptible to the impact of the heavy rainfall,while this can be alleviated by increasing the thickness of the bottom layer.A dimensionless number,defined as the ratio of thickness and d_(10) of the bottom layer,is proposed for designing lateral diversion of the three-layer cover system under humid climates.To preserve the maximum DL,it is suggested that the proposed dimensionless number should be larger than 95 and 110 for the design of rainfall events with 50-year and 100-year return periods for humid climates,respectively.展开更多
基金support and encouragement of the Joint Funds of the National Natural Science Foundation of China(No.U21B2095)the Major Research Project of National Natural Science Foundation of China(No.91834303).
文摘This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金supported by the National Key Research and Development Program of China(2023YFC3711600)the National Natural Science Foundation of China(22076045 and 22376066)the Shanghai Talent Development Funding,and the Shanghai Youth Talent Support Program.
文摘Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current research only focuses on landfill leachates,and the occurrence of MPs in other leachates has not been studied.Therefore,herein,the abundance and characteristics of MPs in three types of leachates,namely,landfill leachate,residual waste leachate,and household food waste leachate,were studied,all leachates were collected from the largest waste disposal center in China.The results showed that the average MP abundances in the different types of leachates ranged from(129±54)to(1288±184)MP particles per liter(particlesL1)and the household food waste leachate exhibited the highest MP abundance(p<0.05).Polyethylene(PE)and fragments were the dominant polymer type and shape in MPs,respectively.The characteristic polymer types of MPs in individual leachates were different.Furthermore,the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates,leading to a higher percentage(>80%)of small MPs(20–100 lm)in landfill leachates compared to other leachates.To the best of our knowledge,this is the first study discussing the sources of MPs in different leachates,which is important for MP pollution control during MSW disposal.
文摘The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.
基金supported by grants from the National Key Research and Development Program of China(2023YE41507601)the National Natural Science Foundation of China(22122807,22378038)+1 种基金the Fundamental Research Funds for the Central Universities(DUT23RC(3)044)State Key Laboratory of Heavy Oil Processing,China University of Petroleum(WX20230149)。
文摘Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challenge compared to traditional methods.In this study,we present a facile method for the recovery of molybdenum and aluminum contents from spent Mo-Ni/Al_(2)O_(3) hydrogenation catalysts through crystallization separation and coprecipitation.Furthermore,the recovered molybdenum and aluminum are utilized as active metals and carriers for the preparation of new catalysts.Their properties were thoroughly analyzed and investigated using various characterization techniques.The hydrogenation activity of these newly prepared catalysts was evaluated on a fixed-bed small-scale device and compared with a reference catalyst synthesized from commercial raw reagents.Finally,the hydrogenation activity of the catalysts was further assessed by using the entire distillate oil of coal liquefaction as the raw oil,specifically focusing on denitrogenation and aromatic saturation.This work not only offers an effective solution for recycling catalysts but also promotes sustainable development.
基金financial support from the school-enterprise cooperation projects(2019-KYY-508101-0078).
文摘The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed.
基金jointly supported by the National Key Research and Development Program of China (2019YFC1905800)the National Key Research & Development Program of China (2018YFC1903500)+4 种基金the commercial project by Beijing Zhong Dian Hua Yuan Environment Protection Technology Co., Ltd. (E01211200005)the Regional key projects of the science and technology service network program (STS program) of the Chinese Academy of Sciences (KFJ-STS-QYZD-153)the Ningbo Science and Technology Innovation Key Projects (2020Z099, 2022Z028)the Ningbo Municipal Commonweal Key Program (2019C10033)the support of Mineral Resources Analytical and Testing Center, Institute of Process Engineering, Chinese Academy of Science
文摘To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively.
基金supported by the National Natural Science Foundation of China(21704047)the Natural Science Foundation of Shandong Province(ZR2017BB078,ZR2021QE137)+1 种基金the Foundation of State Key Laboratory of Biobased Material and Green Papermaking(ZZ20190407)the Major scientific and technological innovation projects of Shandong Province(2019JZZY020230).
文摘A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and environmentally friendly waterborne polyurethane as the matrix material and humic acid,a biomass material,as the functional material.The newly synthesized adsorbents were characterized by infrared spectroscopy,scanning electron microscopy,specific surface area,and thermogravimetric.The effects of contact time(0-8 h),starting concentration(10-100 mg·L^(-1)),pH(3-11),solution temperature(30-60℃),and coexisting ions(Ca2+,Na+,K+,Mg2+)on the performance were investigated.Pseudo-first-order,pseudo-second-order,elovich,and intra-particle diffusion models were used to analyze the adsorption kinetics;the Langmuir,Freundlich,Temkin,and Dubin-Radushkovich adsorption isotherms were evaluated;and the adsorption behavior of the adsorbent materials was found to be more appropriate for the pseudo-second-order model for chemical pollutant removal than the Langmuir model,which depends on monolayer adsorption.WPU-HA2-3 stood out with a maximum adsorption capacity of 813.0081 mg·g^(-1) fitted to the pseudo-second-order and 309.2832 mg·g^(-1) fitted to the Langmuir model,showing superior adsorption performance and regenerability.
基金financially supported by the National Natural Science Foundation of China (22276140)the Shanghai Municipal Government State-Owned Assets Supervision and Administration Commission, China (2022028)the Key Research and Development Project of Zhejiang Province, China (2021C03024).
文摘Mechanical pretreatment is an indispensable process in biological treatment plants that remove plastics and other impurities from household biogenic waste(HBW).However,the imperfect separation of plastics in these pretreatment methods has raised concerns that they pose a secondary formation risk for microplastics(MPs).To validate this presumption,herein,quantities and properties of plastic debris and MPs larger than 50 μm were examined in the full chain of three different pretreatment methods in six plants.These facilities received HBW with or without prior depackaging at the source.The key points in the secondary formation of MPs were identified.Moreover,flux estimates of MPs were released,and an analysis of MPs sources was provided to develop an overview of their fate in HBW pretreatment.Pretreated output can contain a maximum of(1673±279) to(3198±263) MP particles per kilogram of wet weight(particles·kg^(-1)ww) for those undepackaged at source,and secondary MPs formation is primarily attributed to biomass crushers,biohydrolysis reactors,and rough shredders.Comparatively,HBW depackaged at the source can greatly reduce MPs by 8%-72%,regardless of pretreatment processes.Before pretreatment,4.6-205.6 million MP particles were present in 100 tonnes of HBW.MPs are produced at a rate of 741.11-33124.22 billion MP particles annually in anaerobic digester feedstock(ADF).This study demonstrated that HBW pretreatment is a competitive source of MPs and emphasized the importance of implementing municipal solid waste segregation at the source.Furthermore,depackaging biogenic waste at the source is recommended to substantially alleviate the negative effect of pretreatment on MPs formation.
基金National Natural Science Foundation of China(21603064,52102214)Natural Science Foundation of Jiangxi Province(20202BABL203026,20212BAB203001,20202BABL214016)College Student Innovation and Enterprise Programme of Jiangxi Province(S202310405010)provided funding for this study.
文摘It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclodextrin polymers(diethylenetriamine β-cyclodextrin polymer(DETA-TFCDP) and triethylenetetramine β-cyclodextrin polymer(TETA-TFCDP)) were prepared and applied to capture uranium. Results exhibited that DETA-TFCDP and TETA-TFCDP displayed the advantages of high adsorption amounts(612.2and 628.2 mg·g-1, respectively) and rapid adsorption rates, which can reach(88 ± 1)% of their equilibrium adsorption amounts in 10 min. Moreover, the adsorbent processes of DETA-TFCDP and TETATFCDP on uranium(Ⅵ) followed the Langmuir model and pseudo-second-order model, stating they were mainly chemisorption and self-endothermic. Besides, TETA-TFCDP also showed excellent selectivity in the presence of seven competing cations and could be effectively reused five times via Na2CO3as the desorption reagent. Meanwhile, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy illustrated that the enriched multi-amine groups and oxygen-containing functional groups on the surface of TETA-TFCDP were the main active sites for capturing uranium(Ⅵ). Hence, multi-amine β-cyclodextrin polymers are a highly efficient, rapid, and promising adsorbent for capturing uranium(Ⅵ)from radioactive wastewater.
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.
基金supported by the grants(51973027 and 52003044)from the National Natural Science Foundation of Chinathe Fundamental Research Funds for the Central Universities(2232023A-05)+4 种基金the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(21130750100)Major Scientific and Technological Innovation Projects of Shandong Province(2021CXGC011004)This work has also been supported by the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(KF2216)the Donghua University Distinguished Young Professor Program to Prof.Liming Wangthe Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2022040)to Xinyang He.
文摘The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices.
基金supported by the National Natural Science Foundation of China(Grant No.52078034).
文摘During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas.
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金NPRP grant number NPRP12S-0325-190443 from the Qatar National Research Fund (a member of the Qatar Foundation)
文摘Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.
文摘We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.
基金supported by the National Key Research Center and Development Program of the 14th Five-Year Plan,China(No.2022YFC2905105)National Natural Science Foundation of China(Nos.52122406 and 52004337)+2 种基金Hunan High-tech Industry Technology Innovation Leading Plan,China(No.2022GK4056)Hunan Innovative Province Construction Special Project,China(No.2020RC3001)Hunan Postgraduate Research and Innovation Project,China(No.CX20220200).
文摘Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed in this work.This innovative process raised the fluor-ite’s grade to 97.26wt%while producing nanoscale calcium carbonate from its leachate,which contained plenty of calcium ions.On the production of nanoscale calcium carbonate,the impacts of concentration,temperature,and titration rate were examined.By modifying the process conditions and utilizing crystal conditioning agents,calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511μm were produced.The influence of the impurity ions Mn^(2+),Mg^(2+),and Fe^(3+)was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution.The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources,thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles.
文摘The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources.Consequently,many researchers are seeking alternative energy sources.One potential technology,the Microbial Fuel Cell(MFC)based on rice,vegetable,and fruit wastes,can convert chemical energy into electrical energy.This study aims to determine the potency of rice,vegetable,and fruit waste assisted by Cu/Mg electrodes as a generator of electricity.The method used was a laboratory experiment,including the following steps:electrode preparation,waste sample preparation,incubation of the waste samples,construction of a reactor using rice,vegetable,and fruit waste as a source of electricity,and testing.The tests included measuring electrical conductivity,electric current,voltage,current density,and power density.Based on the test results,the maximum current and voltage values for the fruit waste samples were 5.53 V and 11.5 mA,respectively,with a current density of 2.300 mA/cm^(2) and a power density of 12.719 mW/cm^(2).The results indicate the potential for a future development.The next step in development involves determining the optimum conditions for utilizing of rice,vegetable,and fruit waste.The results of the electrical conductivity test on rice,vegetable,and fruit waste samples were 1.51,2.88,and 3.98 mS,respectively,with the highest electrical conductivity value found in the fruit waste sample.
基金supported by the National Natural Science Foundation of China(52270132).
文摘Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.
基金the financial sponsorship from the National Natural Science Foundation of China(Grant No.U20A20320)the area of excellence project(Grant No.AoE/E-603/18)provided by the Research Grants Council of HKSARShenzhen Science and Technology Program(Grant No.KCXFZ20211020163816023).
文摘Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of a low-permeability soil layer underlying a two-layer capillary barrier for humid climates.First,the numerical back-analysis was conducted for verification against a series of flume model tests.Then,a parametric study was performed to investigate the effects of inclination angle,particle size and layer thickness on the lateral diversion length(DL)of the three-layer cover system under the 100-year return period rainfall of humid climates.The results show that the water lateral DL of the cover system can be greatly enhanced by increasing the inclination angle from 3°to 18°.Moreover,the bottom layer of the cover system with a coarser d10 was more susceptible to the impact of the heavy rainfall,while this can be alleviated by increasing the thickness of the bottom layer.A dimensionless number,defined as the ratio of thickness and d_(10) of the bottom layer,is proposed for designing lateral diversion of the three-layer cover system under humid climates.To preserve the maximum DL,it is suggested that the proposed dimensionless number should be larger than 95 and 110 for the design of rainfall events with 50-year and 100-year return periods for humid climates,respectively.