Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling...Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.展开更多
Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology.Poly(ethylene terephthalate)(PET)is one of the most produced plastics in the world.Enzymatic decomposition holds...Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology.Poly(ethylene terephthalate)(PET)is one of the most produced plastics in the world.Enzymatic decomposition holds the promise of recovering monomers from PET plastic,and the monomers can be used to regenerate new PET products.However,there are still limitations in the activity and thermal stability of the existing PET hydrolases.The recent study by Lu et al.introduced a novel PET hydrolase via machine learning-aided engineering.The obtained PET hydrolase showed excellent activity and thermal stability in the hydrolysis of PET and is capable of directly degrading large amounts of postconsumer PET products.This approach provides an effective method for recycling PET waste and is expected to improve the current state of plastic pollution worldwide.展开更多
Agricultural plastics play a pivotal role in agricultural production.However,due to expensive costs,agricultural plastic waste management(APWM)encounters a vast funding gap.As one of the crucial stakeholders,the publi...Agricultural plastics play a pivotal role in agricultural production.However,due to expensive costs,agricultural plastic waste management(APWM)encounters a vast funding gap.As one of the crucial stakeholders,the public deserves to make appropriate efforts for APWM.Accordingly,identifying whether the public is willing to pay for APWM and clarifying the decisions’driving pathways to explore initiatives for promoting their payment intentions are essential to address the dilemma confronting APWM.To this end,by applying the extended theory of planned behavior(TPB),the study conducted an empirical analysis based on 1,288 residents from four provinces(autonomous regions)of northern China.Results illustrate that:1)respondents hold generally positive and relatively strong payment willingness towards APWM;2)respondents’attitude(AT),subjective norm(SN),and perceived behavioral control(PBC)are positively correlated with their payment intentions(INT);3)environmental cognition(EC)and environmental emotion(EE)positively moderate the relationships between AT and INT,and between SN and INT,posing significant indirect impacts on INT.The study’s implications extend to informing government policies,suggesting that multi-entity cooperation,specifically public payment for APWM,can enhance agricultural non-point waste management.展开更多
Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are...Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are unable to fully decompose and mineralize plastic waste. Therefore, there is a need to develop an environmentally friendly, innovative and sustainable photocatalytic process that can destroy these wastes with much less energy and chemical consumption. In photocatalysis, various nanomaterials based on wide energy band gap semiconductors such as TiO2 and ZnO are used for the conversion of plastic contaminants into environmentally friendly compounds. In this work, the removal of plastic fragments by photocatalytic reactions using newly developed photocatalytic composites and the mechanism of photocatalytic degradation of microplastics are systematically investigated. In these degradation processes, sunlight or an artificial light source is used to activate the photocatalyst in the presence of oxygen.展开更多
Background: Plastic pollution is the accumulation of waste composed of plastic and its derivatives all over the environment. Whether in the form of visible garbage or microparticles, as it slowly degrades, plastic pol...Background: Plastic pollution is the accumulation of waste composed of plastic and its derivatives all over the environment. Whether in the form of visible garbage or microparticles, as it slowly degrades, plastic pollution poses significant threats to terrestrial and aquatic habitats and the wildlife that call them home, whether through ingestion, entanglement or exposure to the chemicals contained in the material. Unfortunately, there is a lack of documentation on the impact of plastic waste on human health in low- and middle-income countries (LMICs). Methods: We searched five electronic databases (PubMed, Embase, Global Health, CINAHL and Web of Science) and gray literature, following the preferred reporting elements for systematic reviews and meta-analyses (PRISMA), for the impact of plastic waste on human health in developing countries. We included quantitative and qualitative studies written in English and French. We assessed the quality of the included articles using the Mixed Methods Appraisal tool (MMAT). Results: A total of 3779 articles were initially identified by searching electronic databases. After eliminating duplicates, 3167 articles were reviewed based on title and abstract, and 26 were selected for full-text review. Only three articles were retained. The three articles dealt with practices likely to lead to oral exposure to plastic chemicals in human health, as well as the level of awareness of participants concerning the possible impact of plastic on human health, namely, the use of plastic baby bottles, the use of microwaves to cook food and reheat precooked food, the use of plastic bottles to store water in the refrigerator, water purifier containers with plastic bodies and plastic lunch boxes, the reuse of plastic bags and the inadequacy of treatment facilities. Conclusion: Plastic waste poses different risks to human health at every stage of its life cycle. Hence, strategies must be adopted to raise public awareness of the dangers of plastic waste to their health. Trial registration: The review protocol is registered in the PROSPERO international prospective register of systematic reviews (ID = CRD42023409087).展开更多
The aim of this work was to propose a possibility of using plastic aggregates from waste to reduce the shrinkage and expansion observed in concrete. The process of obtaining plastic aggregates was presented. Natural a...The aim of this work was to propose a possibility of using plastic aggregates from waste to reduce the shrinkage and expansion observed in concrete. The process of obtaining plastic aggregates was presented. Natural aggregates were partially substituted by plastic aggregates in the percentages: 0%, 5%, 10%, 20% and 30%. Drying shrinkage, water absorption and expansion tests were carried out on three families of concrete: control concrete (BT), concrete with addition of BAgP-PEHD high-density polyethylene plastic aggregate and with polyvinyl chloride BAgP-PVC. Given the slow appearance of the internal sulfate attack (ISA), an experimental technique was proposed to accelerate the appearance of this pathology. This technique involves heat treatment which stimulates the heating of the concrete at a young age, followed by a cycle of drying and cooling and ends with total immersion in water. The method of measuring expansions through sample image correlation was also proposed. The results showed an increased skrinkage of BAgP-HDPE compared to BT. On the other hand, a significant decrease in shrinkage was observed in BAgP-PVC samples. Water absorption increased in BAgP-HDPE and BAgP-PVC compared to BT. Greater expansion was observed at the cement paste-plastic aggregate interface than at the cement paste-natural aggregate interface. Given these properties, BAgP-PVC can be recommended for paving surfaces exposed to the hard weather conditions.展开更多
Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyroly...Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyrolysis is deemed the most economical option. Currently, the wax obtained from the pyrolysis of waste plastics is mainly used as a feedstock to manufacture chemicals and fuels or added to asphalt for pavement construction, with no other applications of wax being reported. Herein, the thermal pyrolysis of three common waste polyolefin plastics: high-density polyethylene(HDPE), low-density polyethylene(LDPE), and polypropylene(PP), was conducted at 450 ℃. The waste plastics-derived waxes were characterized and studied for a potential new application: phase change materials(PCMs) for thermal energy storage(TES). Gas chromatography–mass spectrometry analysis showed that paraffin makes up most of the composition of HDPE and LDPE waxes, whereas PP wax contains a mixture of naphthene, isoparaffin, olefin, and paraffin. Diff erential scanning calorimetry(DSC) analysis indicated that HDPE and LDPE waxes have a peak melting temperature of 33.8 ℃ and 40.3 ℃, with a relatively high latent heat of 103.2 J/g and 88.3 J/g, respectively, whereas the PP wax was found to have almost negligible latent heat. Fourier transform infrared spectroscopy and DSC results revealed good chemical and thermal stability of HDPE and LDPE waxes after 100 cycles of thermal cycling. Performance evaluation of the waxes was also conducted using a thermal storage pad to understand their thermoregulation characteristics for TES applications.展开更多
Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity...Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity,selectivity and long-term durability are required for the future up-scaling industrial applications.Herein,we employed the interfacial modification strategy to develop an efficient and stable photoanode and evaluated its PEC activity for ethylene glycol(EG,derived from PET hydrolysate) oxidation to formic acid.The interfacial modification between Fe_(2)O_(3)semiconductor and Ni(OH)xcocatalyst with ultrathin TiO_(x) interlayer not only improved the photocurrent density by accelerating the kinetics of photogenerated charge carriers,but also kept the high Faradaic efficiency(over 95% in 30 h) towards the value-added formic acid product.This work proposes an effective method to promote the PEC activity and enhance the long-term stability of photoelectrodes for upcycling PET plastic wastes.展开更多
The recovery of plastic waste has a positive impact on two fronts: The environment, through waste reduction, and the economy, through its use in road construction. This work involves recycling plastic variants such as...The recovery of plastic waste has a positive impact on two fronts: The environment, through waste reduction, and the economy, through its use in road construction. This work involves recycling plastic variants such as Polypropylene (PP) 50% and LDPE (Low Density Polyethylene) 50% in proportions of 2% to 8%, incorporated into a 0/14 BBSG. The results of the Marshall test gave stability values ranging from 826 to 1523 kg and creep values from 5.5 to 2.45 mm. The Duriez test gave r/R values ranging from 0.769 to 0.786, with water absorption percentages from 2.24% to 0.69%. The PCG test at 80 gyrations gave void percentages ranging from 11.9% to 5.23%. The rutting test gives a rutting depth percentage that drops at 30,000 cycles from 11.5% to 1.3%. This study shows a considerable increase in the mechanical characteristics of asphalt mixes by adding plastic waste.展开更多
The present work investigated the effect of polyethylene terephthalate (PET) plastic waste on the physico-mechanical and thermal properties of cement-stabilized laterite bricks to see the durability of the modified br...The present work investigated the effect of polyethylene terephthalate (PET) plastic waste on the physico-mechanical and thermal properties of cement-stabilized laterite bricks to see the durability of the modified bricks (CSLB). Samples were formulated by mixing laterite, cement, and different percentages of PET (0%, 3%, 5%, and 7%) by volume. The bricks were produced using the M7MI Hydraform standard interlocking block and kept in the shade for a curing period of 28 days. The addition of 3% to 5% PET to the laterite stabilized with 10% cement results in a decrease in both dry and wet compressive strength, which is determined using the Controlab compression machine. However, the obtained results are in concordance with the standards. The thermal conductivity of CSLB, determined using the box method with the EI700 measurement cell, decreases as the PET content of the mixture increases. A decrease in bulk density from 1.67 to 1.58 g/cm<sup>3</sup> was observed.展开更多
Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are d...Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are discarded,they can cause serious harm to the environment and human health.In this study,PET plastic waste was used to create activated carbon using a physical activation process that involved using CO2 gas.The researchers investigated the effects of different temperatures,carbonization,and activation times on the resulting activated carbon’s surface area.The activated carbon was then analyzed using scanning electron microscopy(SEM),X-ray diffraction(XRD),FTIR,and BET.The activated carbon created from PET plastic waste showed excellent absorption properties for methylene blue in aqueous solutions across a wide range of pH levels.By creating activated carbon from plastic waste,not only are environmental issues addressed,but high-value activated carbon is produced for environmental remediation purposes.展开更多
In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construc...In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation.展开更多
The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-...The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-cost,multi-functional evaporators for treating Cr(Ⅵ)-polluted water remains challenging,and the synergistic mechanism on Cr(Ⅵ)reduction is fuzzy.Herein,we propose the combined strategy of ball milling and solution mixing for the sustainable production of Bi-MOF microrod from waste poly(ethylene terephthalate),and construct Bi-MOF-based solar evaporators for simultaneous photo-Fenton Cr(Ⅵ)reduction and freshwater production.Firstly,the evaporator comprised of Bi-MOF microrod and graphene nanosheet possesses high light absorption,efficient photothermal conversion,and good hydro-philic property.Attributing to the advantages,the hybrid evaporator exhibits the evaporation rate of 2.16 kg m^(-2) h^(-1) and evaporation efficiency of 87.5%under 1 kW m^(-2) of irradiation.When integrating with photo-Fenton reaction,the Cr(Ⅵ)reduction efficiency is 91.3%,along with the reaction kinetics of 0.0548 min^(-1),surpassing many advanced catalysts.In the outdoor freshwater production and Cr(Ⅵ)reduction,the daily accumulative water yield is 5.17 kg m^(-2) h^(-1),and the Cr(Ⅵ)reduction efficiency is 99.9%.Furthermore,we prove that the localization effect derived from the interfacial solar-driven evap-oration enhances H_(2)O_(2) activation for the photo-Fenton reduction of Cr(Ⅵ).Based on the result of density functional theory,Bi-MOF microrod provides rich active centers for H_(2)O_(2) activation to produce active sites such as e-or-O_(2).This study not only proposes a new strategy to construct multi-functional solar evaporators for freshwater production and catalytic reduction of pollutants,but also advances the chem-ical upcycling of waste polyesters.展开更多
After the converter steelmaking process,a considerable number of ferroalloys are needed to remove dissolved oxygen from the molten steel,but it also forms a lot of oxide inclusions that cannot be completely removed.At...After the converter steelmaking process,a considerable number of ferroalloys are needed to remove dissolved oxygen from the molten steel,but it also forms a lot of oxide inclusions that cannot be completely removed.At the same time,it increases the carbon emis-sions in the steel production process.After years of research,our team have developed a series of clean deoxidation technologies,includ-ing carbon deoxidation,hydrogen deoxidation,and waste plastic deoxidation of molten steel to address the aforementioned issues.In this study,thermodynamic calculations and laboratory experiments were employed to verify that carbon and hydrogen can reduce the total oxygen content in the molten steel melt to below 5×10^(-6) and 10×10^(-6),respectively.An analysis of the deoxidation mechanisms and ef-fects of polyethylene and polypropylene was also conducted.In addition,the applications of carbon deoxidation technology in different steels with the hot-state experiment and industrial production were discussed carefully.The carbon deoxidation experimental results of different steels were as follows:(1)the oxygen content of bearing steel was effectively controlled at 6.3×10^(-6) and the inclusion number density was lowered by 74.73%compared to aluminum deoxidized bearing steel;(2)the oxygen content in gear steel was reduced to 7.7×10^(-6) and a 54.49%reduction of inclusion number density was achieved with almost no inclusions larger than 5μm from the average level of industry gear steels;(3)a total oxygen content of M2 high-speed steel was as low as 3.7×10^(-6).In industrial production practice,car-bon deoxidation technique was applied in the final deoxidation stage for non-aluminum deoxidized bearing steel,and it yielded excellent results that the oxygen content was reduced to below 8×10^(-6) and the oxide inclusions in the steel mainly consist of silicates,along with small amounts of spinel and calcium aluminate.展开更多
The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction...Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.展开更多
Marine plastic debris has been a pervasive issue since the last century, and research on its sources and fates plays a vital role in the establishment of mitigation measures. However, data on the quantity of plastic w...Marine plastic debris has been a pervasive issue since the last century, and research on its sources and fates plays a vital role in the establishment of mitigation measures. However, data on the quantity of plastic waste that enters the sea on a certain timescale remain largely unavailable in China. Here, we established a model using material flow analysis method based on life cycle assessment to follow plastic product from primary plastic to plastic waste with statistical data and monitoring data from accurate sources. This model can be used to estimate and forecast the annual input of plastic waste into the sea from China until 2020. In 2011, 0.547 3-0.751 5 million tons of plastic waste entered the seas in China, with a growth rate of 4.55% per year until 2017. And the amount will decrease to 0.257 1 to 0.353 1 million tons in 2020 under the influence of governmental management. The amount of plastic waste discharged from coastal areas calculated in this study was much larger than that from river, thus it is suggested to strengthen the governance and control of plastic waste in coastal fishery activities in China in order to reduce the amount of marine plastic waste input.展开更多
As one of the top ten environmental problems to be solved in the world,marine plastic waste and microplastic pollution seriously affect the health of marine ecosystems and the sustainable development of Marine economi...As one of the top ten environmental problems to be solved in the world,marine plastic waste and microplastic pollution seriously affect the health of marine ecosystems and the sustainable development of Marine economies.It is necessary to promote the establishment of a scientific and systematic Marine plastic waste and microplastic pollution control system and take strong measures to fundamentally curb and reverse the trend of marine pollution intensification in China.This paper first explains the practical significance of marine plastic waste and microplastic pollution control from three aspects:the sustainable development of the blue economy,the structural upgrading of the pan-plastic industry,and the improvement of public health awareness.Secondly,the particularity of marine plastic waste and microplastic pollution control system is summarized from three aspects of formation mechanism,migration path and damage performance.Then,it identifies domestic and international governance strategies and action plans from the perspectives of mechanism,subject,object,and measures,summarizes existing problems in the existing marine plastic waste and microplastic pollution control system,and gives directions for future improvement.Finally,some countermeasures and suggestions are put forward to accelerate the construction of China’s marine plastic waste and microplastic pollution control system,including the formation of a cross sectoral integrated land and sea control system,a full life cycle waste management process,a multi-participation model for marine ecological and environmental governance,and a global marine pollution prevention and control system.展开更多
Several methods ofdehalogenation by pyrolysis were summarized in this paper. Some crucial academic problems have been brought forward after analyzing and comparing the technical character as well as dehalogenation eff...Several methods ofdehalogenation by pyrolysis were summarized in this paper. Some crucial academic problems have been brought forward after analyzing and comparing the technical character as well as dehalogenation efficiency of these methods, which should be emphasized in the future research.展开更多
The usage of plastic-impregnated waste derived solid fuel in conventional combustor is hindered by many technical factors, especially its organic chlorine content. In this paper, experimental study of hydrothermal tre...The usage of plastic-impregnated waste derived solid fuel in conventional combustor is hindered by many technical factors, especially its organic chlorine content. In this paper, experimental study of hydrothermal treatment on mixed plastic waste using the mixture of polypropylene, polystyrene, polyethylene and polyvinyl chloride (PVC) has been performed to observe the dechlorination effect of hydrothermal treatment on the waste. The system was generally applying saturated steam at around 2.4 MPa in a stirring reactor for about 90 minutes. After undergoing the process, the organic chlorine in treated plastic waste was reduced to 1,700 ppm level while the inorganic chlorine content was increased, suggesting an organic chlorine conversion phenomenon to inorganic chlorine, accompanied with low pH due to dehydrochlorination process. Additional limestone (Ca(OH)2) in subsequent experiment showed that the similar phenomenon was occurred but with higher pH and lower chlorine content in the condensed water, suggesting the production of inorganic salt rather than hydrochloric acid. Laboratory scale experiment was also performed to confirm the dechlorination phenomena especially for PVC, and the result showed that the main parameter which affected the dechlorination phenomena was the amount of water in hydrothermal process rather than limestone addition. It is suggested that a combination ofhydrothermal process and alkali addition would produce a low-chlorine solid product from plastic waste, promoting its usage as alternative solid fuel.展开更多
基金NPRP grant number NPRP12S-0325-190443 from the Qatar National Research Fund (a member of the Qatar Foundation)
文摘Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.
基金support from the Beijing Municipal Natural Science Foundation(2222012)the National Natural Science Foundation of China(Grant No.52070116)+1 种基金the Key-Area Research and Development Program of Guangdong Province(2020B1111380001)the Tsinghua University-Shanxi Clean Energy Research Institute Innovation Project Seed Fund is gratefully acknowledged.
文摘Plastic waste puts a huge burden on the ecosystem due to the current lack of mature recycling technology.Poly(ethylene terephthalate)(PET)is one of the most produced plastics in the world.Enzymatic decomposition holds the promise of recovering monomers from PET plastic,and the monomers can be used to regenerate new PET products.However,there are still limitations in the activity and thermal stability of the existing PET hydrolases.The recent study by Lu et al.introduced a novel PET hydrolase via machine learning-aided engineering.The obtained PET hydrolase showed excellent activity and thermal stability in the hydrolysis of PET and is capable of directly degrading large amounts of postconsumer PET products.This approach provides an effective method for recycling PET waste and is expected to improve the current state of plastic pollution worldwide.
基金supported by the Major Program of the National Social Science Foundation of China(18ZDA048).
文摘Agricultural plastics play a pivotal role in agricultural production.However,due to expensive costs,agricultural plastic waste management(APWM)encounters a vast funding gap.As one of the crucial stakeholders,the public deserves to make appropriate efforts for APWM.Accordingly,identifying whether the public is willing to pay for APWM and clarifying the decisions’driving pathways to explore initiatives for promoting their payment intentions are essential to address the dilemma confronting APWM.To this end,by applying the extended theory of planned behavior(TPB),the study conducted an empirical analysis based on 1,288 residents from four provinces(autonomous regions)of northern China.Results illustrate that:1)respondents hold generally positive and relatively strong payment willingness towards APWM;2)respondents’attitude(AT),subjective norm(SN),and perceived behavioral control(PBC)are positively correlated with their payment intentions(INT);3)environmental cognition(EC)and environmental emotion(EE)positively moderate the relationships between AT and INT,and between SN and INT,posing significant indirect impacts on INT.The study’s implications extend to informing government policies,suggesting that multi-entity cooperation,specifically public payment for APWM,can enhance agricultural non-point waste management.
文摘Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are unable to fully decompose and mineralize plastic waste. Therefore, there is a need to develop an environmentally friendly, innovative and sustainable photocatalytic process that can destroy these wastes with much less energy and chemical consumption. In photocatalysis, various nanomaterials based on wide energy band gap semiconductors such as TiO2 and ZnO are used for the conversion of plastic contaminants into environmentally friendly compounds. In this work, the removal of plastic fragments by photocatalytic reactions using newly developed photocatalytic composites and the mechanism of photocatalytic degradation of microplastics are systematically investigated. In these degradation processes, sunlight or an artificial light source is used to activate the photocatalyst in the presence of oxygen.
文摘Background: Plastic pollution is the accumulation of waste composed of plastic and its derivatives all over the environment. Whether in the form of visible garbage or microparticles, as it slowly degrades, plastic pollution poses significant threats to terrestrial and aquatic habitats and the wildlife that call them home, whether through ingestion, entanglement or exposure to the chemicals contained in the material. Unfortunately, there is a lack of documentation on the impact of plastic waste on human health in low- and middle-income countries (LMICs). Methods: We searched five electronic databases (PubMed, Embase, Global Health, CINAHL and Web of Science) and gray literature, following the preferred reporting elements for systematic reviews and meta-analyses (PRISMA), for the impact of plastic waste on human health in developing countries. We included quantitative and qualitative studies written in English and French. We assessed the quality of the included articles using the Mixed Methods Appraisal tool (MMAT). Results: A total of 3779 articles were initially identified by searching electronic databases. After eliminating duplicates, 3167 articles were reviewed based on title and abstract, and 26 were selected for full-text review. Only three articles were retained. The three articles dealt with practices likely to lead to oral exposure to plastic chemicals in human health, as well as the level of awareness of participants concerning the possible impact of plastic on human health, namely, the use of plastic baby bottles, the use of microwaves to cook food and reheat precooked food, the use of plastic bottles to store water in the refrigerator, water purifier containers with plastic bodies and plastic lunch boxes, the reuse of plastic bags and the inadequacy of treatment facilities. Conclusion: Plastic waste poses different risks to human health at every stage of its life cycle. Hence, strategies must be adopted to raise public awareness of the dangers of plastic waste to their health. Trial registration: The review protocol is registered in the PROSPERO international prospective register of systematic reviews (ID = CRD42023409087).
文摘The aim of this work was to propose a possibility of using plastic aggregates from waste to reduce the shrinkage and expansion observed in concrete. The process of obtaining plastic aggregates was presented. Natural aggregates were partially substituted by plastic aggregates in the percentages: 0%, 5%, 10%, 20% and 30%. Drying shrinkage, water absorption and expansion tests were carried out on three families of concrete: control concrete (BT), concrete with addition of BAgP-PEHD high-density polyethylene plastic aggregate and with polyvinyl chloride BAgP-PVC. Given the slow appearance of the internal sulfate attack (ISA), an experimental technique was proposed to accelerate the appearance of this pathology. This technique involves heat treatment which stimulates the heating of the concrete at a young age, followed by a cycle of drying and cooling and ends with total immersion in water. The method of measuring expansions through sample image correlation was also proposed. The results showed an increased skrinkage of BAgP-HDPE compared to BT. On the other hand, a significant decrease in shrinkage was observed in BAgP-PVC samples. Water absorption increased in BAgP-HDPE and BAgP-PVC compared to BT. Greater expansion was observed at the cement paste-plastic aggregate interface than at the cement paste-natural aggregate interface. Given these properties, BAgP-PVC can be recommended for paving surfaces exposed to the hard weather conditions.
基金financial support from Individual Research Grant (Grant reference No.: A20E7c0109) of the Agency for Science,Technology and Research of Singapore (A*STAR)。
文摘Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyrolysis is deemed the most economical option. Currently, the wax obtained from the pyrolysis of waste plastics is mainly used as a feedstock to manufacture chemicals and fuels or added to asphalt for pavement construction, with no other applications of wax being reported. Herein, the thermal pyrolysis of three common waste polyolefin plastics: high-density polyethylene(HDPE), low-density polyethylene(LDPE), and polypropylene(PP), was conducted at 450 ℃. The waste plastics-derived waxes were characterized and studied for a potential new application: phase change materials(PCMs) for thermal energy storage(TES). Gas chromatography–mass spectrometry analysis showed that paraffin makes up most of the composition of HDPE and LDPE waxes, whereas PP wax contains a mixture of naphthene, isoparaffin, olefin, and paraffin. Diff erential scanning calorimetry(DSC) analysis indicated that HDPE and LDPE waxes have a peak melting temperature of 33.8 ℃ and 40.3 ℃, with a relatively high latent heat of 103.2 J/g and 88.3 J/g, respectively, whereas the PP wax was found to have almost negligible latent heat. Fourier transform infrared spectroscopy and DSC results revealed good chemical and thermal stability of HDPE and LDPE waxes after 100 cycles of thermal cycling. Performance evaluation of the waxes was also conducted using a thermal storage pad to understand their thermoregulation characteristics for TES applications.
基金supported by the NSFC(21777096,21777097)the Ministry of Science and Technology of China(2018YFC1802001)+1 种基金the OU–SJTU strategic partnership development fundInternational Joint Research Promotion Program in Osaka University。
文摘Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity,selectivity and long-term durability are required for the future up-scaling industrial applications.Herein,we employed the interfacial modification strategy to develop an efficient and stable photoanode and evaluated its PEC activity for ethylene glycol(EG,derived from PET hydrolysate) oxidation to formic acid.The interfacial modification between Fe_(2)O_(3)semiconductor and Ni(OH)xcocatalyst with ultrathin TiO_(x) interlayer not only improved the photocurrent density by accelerating the kinetics of photogenerated charge carriers,but also kept the high Faradaic efficiency(over 95% in 30 h) towards the value-added formic acid product.This work proposes an effective method to promote the PEC activity and enhance the long-term stability of photoelectrodes for upcycling PET plastic wastes.
文摘The recovery of plastic waste has a positive impact on two fronts: The environment, through waste reduction, and the economy, through its use in road construction. This work involves recycling plastic variants such as Polypropylene (PP) 50% and LDPE (Low Density Polyethylene) 50% in proportions of 2% to 8%, incorporated into a 0/14 BBSG. The results of the Marshall test gave stability values ranging from 826 to 1523 kg and creep values from 5.5 to 2.45 mm. The Duriez test gave r/R values ranging from 0.769 to 0.786, with water absorption percentages from 2.24% to 0.69%. The PCG test at 80 gyrations gave void percentages ranging from 11.9% to 5.23%. The rutting test gives a rutting depth percentage that drops at 30,000 cycles from 11.5% to 1.3%. This study shows a considerable increase in the mechanical characteristics of asphalt mixes by adding plastic waste.
文摘The present work investigated the effect of polyethylene terephthalate (PET) plastic waste on the physico-mechanical and thermal properties of cement-stabilized laterite bricks to see the durability of the modified bricks (CSLB). Samples were formulated by mixing laterite, cement, and different percentages of PET (0%, 3%, 5%, and 7%) by volume. The bricks were produced using the M7MI Hydraform standard interlocking block and kept in the shade for a curing period of 28 days. The addition of 3% to 5% PET to the laterite stabilized with 10% cement results in a decrease in both dry and wet compressive strength, which is determined using the Controlab compression machine. However, the obtained results are in concordance with the standards. The thermal conductivity of CSLB, determined using the box method with the EI700 measurement cell, decreases as the PET content of the mixture increases. A decrease in bulk density from 1.67 to 1.58 g/cm<sup>3</sup> was observed.
基金The Ministry of Natural Resources and Environment(No.TNMT.2022.05.04).
文摘Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are discarded,they can cause serious harm to the environment and human health.In this study,PET plastic waste was used to create activated carbon using a physical activation process that involved using CO2 gas.The researchers investigated the effects of different temperatures,carbonization,and activation times on the resulting activated carbon’s surface area.The activated carbon was then analyzed using scanning electron microscopy(SEM),X-ray diffraction(XRD),FTIR,and BET.The activated carbon created from PET plastic waste showed excellent absorption properties for methylene blue in aqueous solutions across a wide range of pH levels.By creating activated carbon from plastic waste,not only are environmental issues addressed,but high-value activated carbon is produced for environmental remediation purposes.
文摘In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation.
基金supported by the National Natural Science Foundation of China(52373099)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)。
文摘The integration of interfacial solar steam generation and photocatalytic degradation technology has pro-vided a promising platform to simultaneously produce freshwater and degrade pollutants.However,con-structing low-cost,multi-functional evaporators for treating Cr(Ⅵ)-polluted water remains challenging,and the synergistic mechanism on Cr(Ⅵ)reduction is fuzzy.Herein,we propose the combined strategy of ball milling and solution mixing for the sustainable production of Bi-MOF microrod from waste poly(ethylene terephthalate),and construct Bi-MOF-based solar evaporators for simultaneous photo-Fenton Cr(Ⅵ)reduction and freshwater production.Firstly,the evaporator comprised of Bi-MOF microrod and graphene nanosheet possesses high light absorption,efficient photothermal conversion,and good hydro-philic property.Attributing to the advantages,the hybrid evaporator exhibits the evaporation rate of 2.16 kg m^(-2) h^(-1) and evaporation efficiency of 87.5%under 1 kW m^(-2) of irradiation.When integrating with photo-Fenton reaction,the Cr(Ⅵ)reduction efficiency is 91.3%,along with the reaction kinetics of 0.0548 min^(-1),surpassing many advanced catalysts.In the outdoor freshwater production and Cr(Ⅵ)reduction,the daily accumulative water yield is 5.17 kg m^(-2) h^(-1),and the Cr(Ⅵ)reduction efficiency is 99.9%.Furthermore,we prove that the localization effect derived from the interfacial solar-driven evap-oration enhances H_(2)O_(2) activation for the photo-Fenton reduction of Cr(Ⅵ).Based on the result of density functional theory,Bi-MOF microrod provides rich active centers for H_(2)O_(2) activation to produce active sites such as e-or-O_(2).This study not only proposes a new strategy to construct multi-functional solar evaporators for freshwater production and catalytic reduction of pollutants,but also advances the chem-ical upcycling of waste polyesters.
基金supported by the National Natural Science Foundation of China(No.52174297).
文摘After the converter steelmaking process,a considerable number of ferroalloys are needed to remove dissolved oxygen from the molten steel,but it also forms a lot of oxide inclusions that cannot be completely removed.At the same time,it increases the carbon emis-sions in the steel production process.After years of research,our team have developed a series of clean deoxidation technologies,includ-ing carbon deoxidation,hydrogen deoxidation,and waste plastic deoxidation of molten steel to address the aforementioned issues.In this study,thermodynamic calculations and laboratory experiments were employed to verify that carbon and hydrogen can reduce the total oxygen content in the molten steel melt to below 5×10^(-6) and 10×10^(-6),respectively.An analysis of the deoxidation mechanisms and ef-fects of polyethylene and polypropylene was also conducted.In addition,the applications of carbon deoxidation technology in different steels with the hot-state experiment and industrial production were discussed carefully.The carbon deoxidation experimental results of different steels were as follows:(1)the oxygen content of bearing steel was effectively controlled at 6.3×10^(-6) and the inclusion number density was lowered by 74.73%compared to aluminum deoxidized bearing steel;(2)the oxygen content in gear steel was reduced to 7.7×10^(-6) and a 54.49%reduction of inclusion number density was achieved with almost no inclusions larger than 5μm from the average level of industry gear steels;(3)a total oxygen content of M2 high-speed steel was as low as 3.7×10^(-6).In industrial production practice,car-bon deoxidation technique was applied in the final deoxidation stage for non-aluminum deoxidized bearing steel,and it yielded excellent results that the oxygen content was reduced to below 8×10^(-6) and the oxide inclusions in the steel mainly consist of silicates,along with small amounts of spinel and calcium aluminate.
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
基金Supported by the National Natural Science Foundation of China(51503154,51776141)Major Projects of China Water Pollution Control and Treatment Science and Technology(2017ZX07202005)
文摘Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.
基金The National Key Research and Development Program of China under contract No.2016YFC1402200the National Natural Science Foundation of China under contract No.41676190
文摘Marine plastic debris has been a pervasive issue since the last century, and research on its sources and fates plays a vital role in the establishment of mitigation measures. However, data on the quantity of plastic waste that enters the sea on a certain timescale remain largely unavailable in China. Here, we established a model using material flow analysis method based on life cycle assessment to follow plastic product from primary plastic to plastic waste with statistical data and monitoring data from accurate sources. This model can be used to estimate and forecast the annual input of plastic waste into the sea from China until 2020. In 2011, 0.547 3-0.751 5 million tons of plastic waste entered the seas in China, with a growth rate of 4.55% per year until 2017. And the amount will decrease to 0.257 1 to 0.353 1 million tons in 2020 under the influence of governmental management. The amount of plastic waste discharged from coastal areas calculated in this study was much larger than that from river, thus it is suggested to strengthen the governance and control of plastic waste in coastal fishery activities in China in order to reduce the amount of marine plastic waste input.
基金This study is supported by the Grant from National Natural Science Foundation of China[Grant No.72004114]the Grant from National Social Science Fund of China[Grant No.18ZDA115]+1 种基金the Innovative Research Group Project of the National Foundation of China[Grant No.71721002]the Grant from China Postdoc‐toral Science Foundation[Grant No.2020M670370].
文摘As one of the top ten environmental problems to be solved in the world,marine plastic waste and microplastic pollution seriously affect the health of marine ecosystems and the sustainable development of Marine economies.It is necessary to promote the establishment of a scientific and systematic Marine plastic waste and microplastic pollution control system and take strong measures to fundamentally curb and reverse the trend of marine pollution intensification in China.This paper first explains the practical significance of marine plastic waste and microplastic pollution control from three aspects:the sustainable development of the blue economy,the structural upgrading of the pan-plastic industry,and the improvement of public health awareness.Secondly,the particularity of marine plastic waste and microplastic pollution control system is summarized from three aspects of formation mechanism,migration path and damage performance.Then,it identifies domestic and international governance strategies and action plans from the perspectives of mechanism,subject,object,and measures,summarizes existing problems in the existing marine plastic waste and microplastic pollution control system,and gives directions for future improvement.Finally,some countermeasures and suggestions are put forward to accelerate the construction of China’s marine plastic waste and microplastic pollution control system,including the formation of a cross sectoral integrated land and sea control system,a full life cycle waste management process,a multi-participation model for marine ecological and environmental governance,and a global marine pollution prevention and control system.
文摘Several methods ofdehalogenation by pyrolysis were summarized in this paper. Some crucial academic problems have been brought forward after analyzing and comparing the technical character as well as dehalogenation efficiency of these methods, which should be emphasized in the future research.
文摘The usage of plastic-impregnated waste derived solid fuel in conventional combustor is hindered by many technical factors, especially its organic chlorine content. In this paper, experimental study of hydrothermal treatment on mixed plastic waste using the mixture of polypropylene, polystyrene, polyethylene and polyvinyl chloride (PVC) has been performed to observe the dechlorination effect of hydrothermal treatment on the waste. The system was generally applying saturated steam at around 2.4 MPa in a stirring reactor for about 90 minutes. After undergoing the process, the organic chlorine in treated plastic waste was reduced to 1,700 ppm level while the inorganic chlorine content was increased, suggesting an organic chlorine conversion phenomenon to inorganic chlorine, accompanied with low pH due to dehydrochlorination process. Additional limestone (Ca(OH)2) in subsequent experiment showed that the similar phenomenon was occurred but with higher pH and lower chlorine content in the condensed water, suggesting the production of inorganic salt rather than hydrochloric acid. Laboratory scale experiment was also performed to confirm the dechlorination phenomena especially for PVC, and the result showed that the main parameter which affected the dechlorination phenomena was the amount of water in hydrothermal process rather than limestone addition. It is suggested that a combination ofhydrothermal process and alkali addition would produce a low-chlorine solid product from plastic waste, promoting its usage as alternative solid fuel.