A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and th...A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.展开更多
A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plas...A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing 02 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO2 could be induced by the pulsed discharge plasma and addition of TiO2 aided the decoloration of Acid Orange II.展开更多
Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reacti...Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, 02, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2. As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.展开更多
A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation o...A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet(UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity;under the highest conductivity condition, the degradation rate could rise to 99%.展开更多
The physicochemical processes of dielectric barrier discharge (DBD) such as insitu formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulat...The physicochemical processes of dielectric barrier discharge (DBD) such as insitu formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.展开更多
Laboratory experiments were conducted to investigate the mixture of wastewater discharged from a submerged multiport diffuser in the Nantong sea-area. The process was then simulated with a three-dimensional numerical ...Laboratory experiments were conducted to investigate the mixture of wastewater discharged from a submerged multiport diffuser in the Nantong sea-area. The process was then simulated with a three-dimensional numerical model. The plane or line patch was used to impose the discharge momentum flux in the near field. A comparison of model simulation with laboratory experiments shows that the proposed model can be used to simulate the shapes of pollution plumes, the distributions of excess concentration, and the velocity induced by a coflowing diffuser in proximity to a shoreline boundary. From the numerical simulation and laboratory experiments, it is recommended that the multiport diffuser be placed in a hydrodynamically active sea-area.展开更多
Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study t...Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study to investigate the treatment of aniline in aqueous solution. Discharge characteristics were assessed by measuring voltage and current waveforms, capturing light emission images, and obtaining optical emission spectra. The effects of several parameters were analyzed, including treatment distance, discharge power, DBD treatment time, initial pH of aniline solutions, and addition of sodium carbonate and hydrogen peroxide to the treatment. Aniline degradation increased with increasing discharge power. Under the same conditions, higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances. At a discharge power of 21.5 W, 84.32% of aniline was removed after 10 rain of DBD treatment. Initial pH significantly influenced aniline degradation. Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline. Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC.展开更多
Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of th...Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of the economy, its direct input coefficient and the final demand in input-output models. In this study, we calculated the sensitivity of the reduction in the Chinese industrial wastewater discharge using the direct input coefficients based on the theory of error-transmission in an input-output framework. Using input-output models, we calculated the direct and total industrial wastewater discharge coefficients. Analysis of 2007 input-output data of 30 sectors of the Chinese economy and of 30 provincial regions of China indicates that by lowering their direct input coefficients, the manufacturers of textiles, paper and paper products, chemical products, smelting and metal pressing, telecommunication equipment, computers and other electronic equipment will significantly reduce their amounts of industrial wastewater discharge. By lowering intra-provincial direct input coefficients to industrial sectors themselves of Jiangsu, Shandong and Zhejiang, there will be a significant reduction in industrial wastewater discharge for the country as a whole. Investment in production technology and improvement in organizational efficiency in these sectors and in these provinces can help lessen the direct input coefficients, thereby effectively achieving a reduction in industrial wastewater discharge in China via industrial restructuring.展开更多
With the swift development of economy, the water quality of Beijing is becoming worse day by day and hampers the sustainable development obviously. In this paper, the current conditions of the municipal wastewater str...With the swift development of economy, the water quality of Beijing is becoming worse day by day and hampers the sustainable development obviously. In this paper, the current conditions of the municipal wastewater structure in the industrial sectors are analysed and discussed in terms of the indicators, such as direct wastewater\|discharge coefficient, complete wastewater\|discharge coefficient, direct discharge coefficient of COD and complete discharge coefficient of COD, by taking a year of 1990s as the base year. Some countermeasures are studied and the corresponding recommendations are put forward in order to improve the water environment in Beijing. This provides a scientific ground for coordinating the relationship between the aquatic environment and economic growth in this city.展开更多
This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastew...This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.展开更多
The research performed statistical analysis on 186 data concerning the amount of discharged industrial wastewater, the amount of oxygen demand of industrial wastewater, the amount of ammonia and nitrogen discharged fr...The research performed statistical analysis on 186 data concerning the amount of discharged industrial wastewater, the amount of oxygen demand of industrial wastewater, the amount of ammonia and nitrogen discharged from industries, the amount of urban discharged domestic sewage, the amount of daily life chemical oxygen demand, and the amount of domestic ammonia and nitrogen to explore source of pollutants from wastewater and guarantee urban water quality.Factor analysis was then performed with SPSS according to discharge quantity of pollutants. The results should that the major pollutants are from domestic sewage it is expected scientific suggestions be proposed on water quality in our country.展开更多
Degradation of methylene blue (MB) was performed using the pulsed discharge process (PDP) combined with spent tea leaves (STLs). The effects of STL dosage, concentration of initial solution, and pH were analyzed...Degradation of methylene blue (MB) was performed using the pulsed discharge process (PDP) combined with spent tea leaves (STLs). The effects of STL dosage, concentration of initial solution, and pH were analyzed in the combined treatment. Results showed that the combined treatment was effective for dye wastewater degradation; when the dosage of STLs was 3.2 g/L, the degradation efficiency reached 90% after 15 rain treatment, and STLs showed a good repeatability. The degradation rate decreased with increasing initial MB concentration but not related to the solution pH in the combined treatment. Fourier-transform infrared spectra and N2 adsorption suggested that the number of acidic and basic groups in the STL surface increased after the treatment, but the surface area and pore volume remained unchanged.展开更多
Synthetic dyes are substances that are relatively stable and difficult to degrade in wastewater treatment plants using normal physical,chemical or / and biological treatment. The present work explored the synergistic ...Synthetic dyes are substances that are relatively stable and difficult to degrade in wastewater treatment plants using normal physical,chemical or / and biological treatment. The present work explored the synergistic effect of non-thermal plasma( NTP) and biological wastewater treatment technologies on practical dye wastewater degradation by establishing a double dielectric barrier discharge( DDBD) system combined with a sequencing batch reactor( SBR) system. The biodegradation and degradation efficiency of the DDBD-SBR system was investigated. The investigation results indicated that the DDBD technology was effective in treating the practical dye wastewater as a pre-treatment process. After a 10-min treatment,although the total organic carbon( TOC) removal efficiency was not so significant, the decolouration and the biodegradation were improved greatly. The microbial toxicity test revealed that the sample after degradation became less toxic than the original dye,which demonstrated the treatment had a significant effect on the reduction of toxicity. In addition,the SBR technology remedied the defects of DDBD treatment and improved TOC removal efficiency noticeably. The hybrid DDBD-SBR system made full use of the advantages of the individual technologies and exhibited an efficient capability for practical dye wastewater treatment.展开更多
A novel water treatment technique, based on a combination of electrospraying and pulsed corona discharge, has been used for bio-decontamination of wastewater. The electrospraying process has been found to increase the...A novel water treatment technique, based on a combination of electrospraying and pulsed corona discharge, has been used for bio-decontamination of wastewater. The electrospraying process has been found to increase the surface area of the treated wastewater, and hence increases the efficiency of the corona treatment process. The phase diagram of the discharge, which characterizes the discharge regimes, has been identified experimentally. The survival ratio of the microorganisms has been investigated experimentally as a function of the applied voltage and the numbers of treatment runs using air and oxygen as working gases. Microorganism surface has been examined using scanning electron microscope (SEM), which enabled in understanding the decontamination mechanisms of the treated microorganism. A complete decontamination has been achieved after only one run for an applied voltage higher than 16 kV when the discharge system was operated in oxygen gas. Optical emission spectrum of the electrosprayed water confirmed the existence of OH-radicals responsible for decontamination process.展开更多
Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment ...Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.展开更多
The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But t...The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But the interaction between different parts demands that each part is designed iteratively to optimize the whole water network. Therefore, on the basis of the separated design a water netvrork superstructure including reuse, regeneration and wastewater treatment is established from the system engineering point of view. And a multi-objective adaptive simulated annealing genetic algorithm is adopted to simultaneously integrate the overall water netvrork to balance the economic and environmental effects. The algorithm overcomes the defect of local optimum of simulated annealing (SA), avoids the pre-maturation of genetic algorithm (GA) and finds a set of solutions (pareto front) in acceptable computer time. Prom the pareto front, a point with minimum fresh water consumption will be extended to zero discharge as our ultimate goal.展开更多
With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with th...With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with the emissions of do- mestic wastewater, the discharge amount of pollutants has exceeded standard in many cities, which not only pollutes the water resources, but also greatly threatens the environment, and does great harm to people's health. The principal component analysis was conducted based on the principal components extracted from the data of major pollutants emission conditions in the wastewater of major cities from the China Statistical Yearbook 2014.展开更多
In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the elec...In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the electrical discharge plasma are reviewed, and their possible roles in the degradation of contaminants are discussed. Measurement methods for the quantification of important reactive species and their advantages and shortcomings are presented. Approaches on how to enhance the diffusion of the reactive species in solution are examined. In addition, the formation of typical reactive species in different electrical discharge plasma is compared.展开更多
Electric discharge plasma(EDP)can efficiently degrade aqueous pollutants by its in situ gen erated strong oxidative species(OH,0,H2O2.O.etc)“nd other physiochemical effects(UV irradiation,shockwaves,local high temper...Electric discharge plasma(EDP)can efficiently degrade aqueous pollutants by its in situ gen erated strong oxidative species(OH,0,H2O2.O.etc)“nd other physiochemical effects(UV irradiation,shockwaves,local high temperature,etc),but a high energy consumptions limit the application of EDP in water treatment.Some adsorbents,catalysts,and oxida nts have been employed for en hanci ng the degradation of pollutants by discharge plasma.These hybrid plasma technologies offer improved water treatment performance compared to dischai'ge plasma alone.This paper reviews the water decontamination performance and mechanisms of these hybrid plasma technologies,and some suggestions on future water treatment technologies based on discharge plasma are also proposed.展开更多
A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the...A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe^2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses.展开更多
基金supported by the Major Projects on Control and Rectification of Water Body Pollution (Water Special Project) (No.2009ZX07010-001,2008ZX07526-001)the National Basic Research Program (973) of China (No.2008CB418201)
文摘A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.
基金supported financially by the Program for Liaoning Excellent Talents in University,China (No.2009R09)National Natural Science Foundation of China (No.40901150)863 Program of China (No.2009AA064101-4)
文摘A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing 02 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO2 could be induced by the pulsed discharge plasma and addition of TiO2 aided the decoloration of Acid Orange II.
基金supported by the Ministry of Education, Science & Technology (MEST)the National Research Foundation of Korea (NRF)
文摘Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, 02, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2. As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.
基金supported by National Natural Science Foundation of China(No.11075041)
文摘A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet(UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity;under the highest conductivity condition, the degradation rate could rise to 99%.
文摘The physicochemical processes of dielectric barrier discharge (DBD) such as insitu formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.
文摘Laboratory experiments were conducted to investigate the mixture of wastewater discharged from a submerged multiport diffuser in the Nantong sea-area. The process was then simulated with a three-dimensional numerical model. The plane or line patch was used to impose the discharge momentum flux in the near field. A comparison of model simulation with laboratory experiments shows that the proposed model can be used to simulate the shapes of pollution plumes, the distributions of excess concentration, and the velocity induced by a coflowing diffuser in proximity to a shoreline boundary. From the numerical simulation and laboratory experiments, it is recommended that the multiport diffuser be placed in a hydrodynamically active sea-area.
基金supported by National Natural Science Foundation of China(No.51377075)the Natural Science Foundation of Jiangsu Province of China(No.BK20131412)the Environmental Protection Scientific Foundation of Jiangsu Province of China(No.201004)
文摘Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study to investigate the treatment of aniline in aqueous solution. Discharge characteristics were assessed by measuring voltage and current waveforms, capturing light emission images, and obtaining optical emission spectra. The effects of several parameters were analyzed, including treatment distance, discharge power, DBD treatment time, initial pH of aniline solutions, and addition of sodium carbonate and hydrogen peroxide to the treatment. Aniline degradation increased with increasing discharge power. Under the same conditions, higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances. At a discharge power of 21.5 W, 84.32% of aniline was removed after 10 rain of DBD treatment. Initial pH significantly influenced aniline degradation. Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline. Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC.
基金Under the auspices of Key Program of Chinese Academy of Sciences(No.KZZD-EW-06-02)National Natural Science Foundation of China(No.41201129)Humanities and Social Science Research Planning Fund,Ministry of Education of China(No.13YJAZH042)
文摘Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of the economy, its direct input coefficient and the final demand in input-output models. In this study, we calculated the sensitivity of the reduction in the Chinese industrial wastewater discharge using the direct input coefficients based on the theory of error-transmission in an input-output framework. Using input-output models, we calculated the direct and total industrial wastewater discharge coefficients. Analysis of 2007 input-output data of 30 sectors of the Chinese economy and of 30 provincial regions of China indicates that by lowering their direct input coefficients, the manufacturers of textiles, paper and paper products, chemical products, smelting and metal pressing, telecommunication equipment, computers and other electronic equipment will significantly reduce their amounts of industrial wastewater discharge. By lowering intra-provincial direct input coefficients to industrial sectors themselves of Jiangsu, Shandong and Zhejiang, there will be a significant reduction in industrial wastewater discharge for the country as a whole. Investment in production technology and improvement in organizational efficiency in these sectors and in these provinces can help lessen the direct input coefficients, thereby effectively achieving a reduction in industrial wastewater discharge in China via industrial restructuring.
文摘With the swift development of economy, the water quality of Beijing is becoming worse day by day and hampers the sustainable development obviously. In this paper, the current conditions of the municipal wastewater structure in the industrial sectors are analysed and discussed in terms of the indicators, such as direct wastewater\|discharge coefficient, complete wastewater\|discharge coefficient, direct discharge coefficient of COD and complete discharge coefficient of COD, by taking a year of 1990s as the base year. Some countermeasures are studied and the corresponding recommendations are put forward in order to improve the water environment in Beijing. This provides a scientific ground for coordinating the relationship between the aquatic environment and economic growth in this city.
文摘This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.
文摘The research performed statistical analysis on 186 data concerning the amount of discharged industrial wastewater, the amount of oxygen demand of industrial wastewater, the amount of ammonia and nitrogen discharged from industries, the amount of urban discharged domestic sewage, the amount of daily life chemical oxygen demand, and the amount of domestic ammonia and nitrogen to explore source of pollutants from wastewater and guarantee urban water quality.Factor analysis was then performed with SPSS according to discharge quantity of pollutants. The results should that the major pollutants are from domestic sewage it is expected scientific suggestions be proposed on water quality in our country.
基金supported by the Science and Technology Department of Sichuan Province,China(No.2010JY0040)
文摘Degradation of methylene blue (MB) was performed using the pulsed discharge process (PDP) combined with spent tea leaves (STLs). The effects of STL dosage, concentration of initial solution, and pH were analyzed in the combined treatment. Results showed that the combined treatment was effective for dye wastewater degradation; when the dosage of STLs was 3.2 g/L, the degradation efficiency reached 90% after 15 rain treatment, and STLs showed a good repeatability. The degradation rate decreased with increasing initial MB concentration but not related to the solution pH in the combined treatment. Fourier-transform infrared spectra and N2 adsorption suggested that the number of acidic and basic groups in the STL surface increased after the treatment, but the surface area and pore volume remained unchanged.
基金Key Basic Research of Shanghai Science and Technology Committee,China(No.11JC1400100)National Natural Science Foundations of China(Nos.51108070,51178093)+2 种基金Shanghai Pujiang Programmethe Program for New Century Excellent Talents in University,China(No.NCET-12-0826)Fundamental Research Funds for Central Universities,China
文摘Synthetic dyes are substances that are relatively stable and difficult to degrade in wastewater treatment plants using normal physical,chemical or / and biological treatment. The present work explored the synergistic effect of non-thermal plasma( NTP) and biological wastewater treatment technologies on practical dye wastewater degradation by establishing a double dielectric barrier discharge( DDBD) system combined with a sequencing batch reactor( SBR) system. The biodegradation and degradation efficiency of the DDBD-SBR system was investigated. The investigation results indicated that the DDBD technology was effective in treating the practical dye wastewater as a pre-treatment process. After a 10-min treatment,although the total organic carbon( TOC) removal efficiency was not so significant, the decolouration and the biodegradation were improved greatly. The microbial toxicity test revealed that the sample after degradation became less toxic than the original dye,which demonstrated the treatment had a significant effect on the reduction of toxicity. In addition,the SBR technology remedied the defects of DDBD treatment and improved TOC removal efficiency noticeably. The hybrid DDBD-SBR system made full use of the advantages of the individual technologies and exhibited an efficient capability for practical dye wastewater treatment.
文摘A novel water treatment technique, based on a combination of electrospraying and pulsed corona discharge, has been used for bio-decontamination of wastewater. The electrospraying process has been found to increase the surface area of the treated wastewater, and hence increases the efficiency of the corona treatment process. The phase diagram of the discharge, which characterizes the discharge regimes, has been identified experimentally. The survival ratio of the microorganisms has been investigated experimentally as a function of the applied voltage and the numbers of treatment runs using air and oxygen as working gases. Microorganism surface has been examined using scanning electron microscope (SEM), which enabled in understanding the decontamination mechanisms of the treated microorganism. A complete decontamination has been achieved after only one run for an applied voltage higher than 16 kV when the discharge system was operated in oxygen gas. Optical emission spectrum of the electrosprayed water confirmed the existence of OH-radicals responsible for decontamination process.
基金Project(2006BAJ04A)suppprted by the National Sci-Tech Support Plan,China
文摘Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.
文摘The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But the interaction between different parts demands that each part is designed iteratively to optimize the whole water network. Therefore, on the basis of the separated design a water netvrork superstructure including reuse, regeneration and wastewater treatment is established from the system engineering point of view. And a multi-objective adaptive simulated annealing genetic algorithm is adopted to simultaneously integrate the overall water netvrork to balance the economic and environmental effects. The algorithm overcomes the defect of local optimum of simulated annealing (SA), avoids the pre-maturation of genetic algorithm (GA) and finds a set of solutions (pareto front) in acceptable computer time. Prom the pareto front, a point with minimum fresh water consumption will be extended to zero discharge as our ultimate goal.
文摘With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with the emissions of do- mestic wastewater, the discharge amount of pollutants has exceeded standard in many cities, which not only pollutes the water resources, but also greatly threatens the environment, and does great harm to people's health. The principal component analysis was conducted based on the principal components extracted from the data of major pollutants emission conditions in the wastewater of major cities from the China Statistical Yearbook 2014.
基金funded by National Natural Science Foundation of China (Nos. 51608448 and 21737003)Young Talent Cultivation Scheme Funding of Northwest A&F University (No. Z109021802)the Fundamental Research Funds for the Central Universities (No. Z109021617) for their financial support in this research
文摘In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the electrical discharge plasma are reviewed, and their possible roles in the degradation of contaminants are discussed. Measurement methods for the quantification of important reactive species and their advantages and shortcomings are presented. Approaches on how to enhance the diffusion of the reactive species in solution are examined. In addition, the formation of typical reactive species in different electrical discharge plasma is compared.
文摘Electric discharge plasma(EDP)can efficiently degrade aqueous pollutants by its in situ gen erated strong oxidative species(OH,0,H2O2.O.etc)“nd other physiochemical effects(UV irradiation,shockwaves,local high temperature,etc),but a high energy consumptions limit the application of EDP in water treatment.Some adsorbents,catalysts,and oxida nts have been employed for en hanci ng the degradation of pollutants by discharge plasma.These hybrid plasma technologies offer improved water treatment performance compared to dischai'ge plasma alone.This paper reviews the water decontamination performance and mechanisms of these hybrid plasma technologies,and some suggestions on future water treatment technologies based on discharge plasma are also proposed.
基金supported by National Natural Science Foundation of China(No.51377075)the Natural Science Foundation of Jiangsu Province of China(Nos.BK20131412,BK20150951)
文摘A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe^2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses.