Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and ...Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and reaction time on the efficiency for removal of nitrobenzene was investigated. The experimental results show that the high gravity technology enhances the ozone utilization efficiency with O3/H202 showing synergistic effect. The degradation efficiency in terms of the COD removal rate and nitrobenzene removal rate reached 45.8% and 50.4%, respectively, under the following reaction conditions, viz.: a high gravity factor of 66.54, a pH value of 9, a H2O2/O3 molar ratio of 1:1, a liquid flow rate of 140 L/h, an ozone concentration of 40 rag/L, a H2O2 multiple dosing mode of 6 mL/h, and a reaction time of 4 h. Compared with the performance of conventional stirred aeration mixers, the high gravity technology could increase the COD and nitrobenzene removal rate related with the nitrobenzene-containing wastewater by 22.9% and 23.3%, respectively.展开更多
Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid a...Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid adsorbent to treat Cd^(2+)-containing wastewater,and its adsorption behavior on Cd^(2+)in aqueous solution was studied and analyzed.The microstructure and morphology of the molecular sieve were investigated by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM)and specific surface area analyzer.The results show that the synthesized 13-X molecular sieve has higher Brunauer–Emmett–Teller(BET)specific surface area with higher crystallinity and higher adsorption capacity for the heavy metal Cd^(2+).The adsorption process of Cd^(2+)by molecular sieve conforms to the Langmuir isotherm adsorption equation and Lagergren pseudo-second-order rate equation.Combined with thermodynamic calculation,it can be concluded that the adsorption process is physically monolayer,spontaneous and exothermic.In this study,a low-cost and naturally available synthesis method of 13-X molecular sieve is reported.Combined with its adsorption mechanism for Cd^(2+),it provides a feasible and general method for removing heavy metal ions from coal gangue and also provides a new way for the utilization of coal gangue with high added value.展开更多
研究了以水淬渣-累托石为吸附剂对含Cu2+的冶金废水进行处理。实验结果表明,在不调节含Cu2+冶金废水pH值的条件下,水淬渣与累托石质量比为3∶1,吸附剂用量为0.03 g/mL,作用时间为20 m in,温度为25℃(常温)时,Cu2+的去除率达99.8%,对Cu2...研究了以水淬渣-累托石为吸附剂对含Cu2+的冶金废水进行处理。实验结果表明,在不调节含Cu2+冶金废水pH值的条件下,水淬渣与累托石质量比为3∶1,吸附剂用量为0.03 g/mL,作用时间为20 m in,温度为25℃(常温)时,Cu2+的去除率达99.8%,对Cu2+的吸附容量为0.302 mg/g,处理后的水符合国家污水综合排放标准(GB8978-1996)一级标准。水淬渣-累托石混合吸附剂比水淬渣或累托石单一吸附剂除Cu2+效果要好。展开更多
基金financially supported by the National Natural Science Foundation of China(21206153)Science and Technology Development Program Fund of Taiyuan City(120164053)
文摘Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and reaction time on the efficiency for removal of nitrobenzene was investigated. The experimental results show that the high gravity technology enhances the ozone utilization efficiency with O3/H202 showing synergistic effect. The degradation efficiency in terms of the COD removal rate and nitrobenzene removal rate reached 45.8% and 50.4%, respectively, under the following reaction conditions, viz.: a high gravity factor of 66.54, a pH value of 9, a H2O2/O3 molar ratio of 1:1, a liquid flow rate of 140 L/h, an ozone concentration of 40 rag/L, a H2O2 multiple dosing mode of 6 mL/h, and a reaction time of 4 h. Compared with the performance of conventional stirred aeration mixers, the high gravity technology could increase the COD and nitrobenzene removal rate related with the nitrobenzene-containing wastewater by 22.9% and 23.3%, respectively.
基金This study was financially supported by the National Natural Science Foundation of China(No.52172099)the Basic Research Plan of Natural Science of Shaanxi Province(No.2020JQ-754)+3 种基金the Key Innovation Team of Shaanxi Province(No.2014KCT-04)the Excellent Youth Science and Technology Fund Project of Xi'an University of Science and Technology(Grant No.6310221009)the Excellent Youth Science and Technology Fund Project of Xi'an University of Science and Technology(Grant No.6310221009)the Special Project of Shaanxi Province(No.19JK0490)and the Study on Preparation and Properties of New Solid-Wastebased Cementitious Materials(No.6000190120).
文摘Using coal gangue(CG)as raw material,a new type of all solid-waste-based 13-X molecular sieve material was controllably prepared by alkali fusion-hydrothermal method.The synthetic molecular sieve was used as a solid adsorbent to treat Cd^(2+)-containing wastewater,and its adsorption behavior on Cd^(2+)in aqueous solution was studied and analyzed.The microstructure and morphology of the molecular sieve were investigated by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM)and specific surface area analyzer.The results show that the synthesized 13-X molecular sieve has higher Brunauer–Emmett–Teller(BET)specific surface area with higher crystallinity and higher adsorption capacity for the heavy metal Cd^(2+).The adsorption process of Cd^(2+)by molecular sieve conforms to the Langmuir isotherm adsorption equation and Lagergren pseudo-second-order rate equation.Combined with thermodynamic calculation,it can be concluded that the adsorption process is physically monolayer,spontaneous and exothermic.In this study,a low-cost and naturally available synthesis method of 13-X molecular sieve is reported.Combined with its adsorption mechanism for Cd^(2+),it provides a feasible and general method for removing heavy metal ions from coal gangue and also provides a new way for the utilization of coal gangue with high added value.
文摘研究了以水淬渣-累托石为吸附剂对含Cu2+的冶金废水进行处理。实验结果表明,在不调节含Cu2+冶金废水pH值的条件下,水淬渣与累托石质量比为3∶1,吸附剂用量为0.03 g/mL,作用时间为20 m in,温度为25℃(常温)时,Cu2+的去除率达99.8%,对Cu2+的吸附容量为0.302 mg/g,处理后的水符合国家污水综合排放标准(GB8978-1996)一级标准。水淬渣-累托石混合吸附剂比水淬渣或累托石单一吸附剂除Cu2+效果要好。