期刊文献+
共找到444,387篇文章
< 1 2 250 >
每页显示 20 50 100
Some Indicators of the Water Regime in Some Varieties Belonging to the Monarda didyma L. Genus in the Conditions of Tashkent (Uzbekistan)
1
作者 Mamadalieva Vakhobjon Kizi Madina Rakhimova Tashkhanim 《American Journal of Plant Sciences》 CAS 2024年第5期374-386,共13页
In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the l... In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the leaves, water deficit, water storage capacity were studied in spring and summer, and seasonal changes were determined. According to these indicators of the water regime, the studied varieties belong to the labile water regime, high green mass (centner), seed yield (how many grams), resistance to diseases and pests have been determined, which shows that it is promising for introduction in the conditions of our republic. Therefore, it is recommended to breed these varieties in the foothills and hilly regions of Uzbekistan, where the amount of precipitation is more than 400 - 500 mm. 展开更多
关键词 Uzbekistan Tashkent Monarda didyma Bergama Jar-Ptitsa Cambridge Scarlet Water Regime Water Quantity Water Shortage Water Storage Capacity Labile
下载PDF
Progress and prospects of EOR technology in deep,massive sandstone reservoirs with a strong bottom-water drive
2
作者 Haiying Liao Ting Xu Hongmin Yu 《Energy Geoscience》 EI 2024年第1期249-255,共7页
The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At presen... The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive. 展开更多
关键词 Edge water Bottom water Water coning Massive reservoir Water injection Gas injection
下载PDF
Innovative Technologies for Large-Scale Water Production in Arid Regions: Strategies for Sustainable Development
3
作者 Boris Menin 《Journal of Applied Mathematics and Physics》 2024年第7期2506-2558,共53页
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate... Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development. 展开更多
关键词 Atmospheric Water Generation Advanced Desalination Sustainable Development Geothermal Water Extraction Water Recycling Arid Regions Water Security
下载PDF
Performance of a Horizontal Flow Constructed Reed Bed Filter for Municipal Wastewater Treatment: The Case Study of the Prototype Installed at Gaston Berger University, Saint-Louis, Senegal
4
作者 Abdou Khafor Ndiaye Falilou Coundoul +2 位作者 Abdoulaye Deme Antonina Torrens Armengol Abdoulaye Senghor 《Natural Resources》 2024年第1期1-16,共16页
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed... In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability. 展开更多
关键词 Constructed Wetlands Horizontal Flow Reed Beds Wastewater Treatment Phragmites and Typha Plants Physicochemical Pollutant Removal Microbiological Indicators Fecal Coliforms and Helminth Eggs Water Quality Improvement Senegal Water Reuse Standards Sustainable Water Management Agricultural Irrigation Reuse Nutrient Removal Efficiency Environmental Engineering Ecological Sanitation Systems
下载PDF
Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China
5
作者 LU Haitian ZHAO Ruifeng +3 位作者 ZHAO Liu LIU Jiaxin LYU Binyang YANG Xinyue 《Journal of Arid Land》 SCIE CSCD 2024年第6期798-815,共18页
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp... Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity. 展开更多
关键词 surface water area terrestrial water storage Open-surface Water Detection Method with Enhanced Impurity Control method Google Earth Engine climate change human activities inland arid and semi-arid areas
下载PDF
Spatial Heterogeneity of Embedded Water Consumption from the Perspective of Virtual Water Surplus and Deficit in the Yellow River Basin,China
6
作者 MA Weijing LI Xiangjie +1 位作者 KOU Jingwen LI Chengyi 《Chinese Geographical Science》 SCIE CSCD 2024年第2期311-326,共16页
Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its i... Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity. 展开更多
关键词 virtual water trade(VWT) input-output model(MRIO) virtual water surplus virtual water deficit Yellow River Basin China
下载PDF
Exploring groundwater quality in semi-arid areas of Algeria:Impacts on potable water supply and agricultural sustainability
7
作者 Noua ALLAOUA Hinda HAFID Haroun CHENCHOUNI 《Journal of Arid Land》 SCIE CSCD 2024年第2期147-167,共21页
Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well a... Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water. 展开更多
关键词 bacteriological indicator GROUNDWATER WATERSHED physical-chemical parameter water quality index
下载PDF
Microbiological and Physico-Chemical Analysis of the Waters of the “Mamouwol” Stream in the Urban District of Mamou (Republic of Guinea)
8
作者 Mamadou Lamarana Souare Mamadou Madaniou Sow +1 位作者 Saran Camara Adama Moussa Sakho 《Journal of Water Resource and Protection》 CAS 2024年第8期559-568,共10页
Water is essential to life and to the sustainable socio-economic development of a nation, It is therefore interesting to have a better knowledge of the quality of this water. The aim was to determine the degree of mic... Water is essential to life and to the sustainable socio-economic development of a nation, It is therefore interesting to have a better knowledge of the quality of this water. The aim was to determine the degree of microbiological and physico-chemical pollution of the water of the “Mamouwol” river in the town of Mamou. To do this, we chose four (4) sampling sites spread throughout the town of Mamou. During the month of March (2024), 4 water samples were analyzed to monitor the water quality of this river. The average values of the flora analyzed show that these water are heavily contaminated with bacteria indicative of fecal and metal pollution. This study showed that sites: Mam4;Mam2 and Mam1 contain the highest loads, with Total Coliform counts ranging from 1534 CFU/100 ml to 2100 CFU/100 ml, the number of faecal coliforms varies between 526 and 1240 CFU/100 ml, and that of faecal streptococci between 526 and 841 CFU/100 ml. Metal content, BOD5 and COD all comply with the laboratory’s analysis criteria, although they vary from point to point. 展开更多
关键词 Pollution Water Watercourses Waterborne Diseases Microbiological Analysis
下载PDF
Displacement characteristics of CO_(2)flooding in extra-high water-cut reservoirs
9
作者 Rui Wang Yaxiong Zhang +3 位作者 Chengyuan Lyu Zengmin Lun Maolei Cui Dongjiang Lang 《Energy Geoscience》 EI 2024年第1期212-218,共7页
Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the inje... Carbon dioxide(CO_(2))flooding is a widely applied recovery method during the tertiary recovery of oil and gas.A high water saturation condition in reservoirs could induce a‘water shielding’phenomenon after the injection of CO_(2).This would prevent contact between the injected gas and the residual oil,restricting the development of the miscible zone.A micro-visual experiment of dead-end models,used to observe the effect of a film of water on the miscibility process,indicates that CO_(2)can penetrate the water film and come into contact with the residual oil,although the mixing is significantly delayed.However,the dissolution loss of CO_(2)at high water-cut conditions is not negligible.The oil-water partition coefficient,defined as the ratio of CO_(2)solubility in an oil-brine/two-phase system,keeps constant for specific reservoir conditions and changes little with an injection gas.The NMR device shows that when CO_(2)flooding follows water flooding,the residual oil decreasesdnot only in medium and large pores but also in small and micro pores.At levels of higher water saturation,CO_(2)displacement is characterized initially by a low oil production rate and high water-cut.After the CO_(2)breakthrough,the water-cut decreases sharply and the oil production rate increases gradually.The response time of CO_(2)flooding at high watercut reservoirs is typically delayed and prolonged.These results were confirmed in a pilot test for CO_(2)flooding at the P1-1 well group of the Pucheng Oilfield.Observations from this pilot study also suggest that a larger injection gas pore volume available for CO_(2)injection is required to offset the dissolution loss in high water saturation conditions. 展开更多
关键词 Displacement characteristics CO_(2)flooding Water shield phenomenon Oil-water partition coefficient Response time High water-cut
下载PDF
Perceptions of Bark Beetle Landscape Disturbance Effects on Natural Resources and Drinking Water: Assessing Communication and Knowledge Exchange in the Rocky Mountain Region, USA
10
作者 Stuart P. Cottrell Katherine Mattor Jana Raadik Cottrell 《Open Journal of Ecology》 2024年第1期77-100,共24页
Widespread changes to forested watersheds affected by the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic across western North America raised concerns about the effects of this climate-induced disturba... Widespread changes to forested watersheds affected by the mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic across western North America raised concerns about the effects of this climate-induced disturbance on drinking water and natural resources. Effective communication and knowledge exchange across scientists and stakeholders (i.e., drinking water managers) is essential for constructively responding to such landscape scale disturbances, providing improved adaptive capacity through knowledge sharing. An assessment of stakeholder knowledge levels, information needs, primary concerns, and suggested communication strategies were conducted via an online elicitation survey and World Science Café workshops. Knowledge levels, assessed via a survey of local water managers and experts, were relatively low with approximately half of the respondents reporting little to no knowledge of the effects of mountain pine beetle on drinking water quality and quantity, thereby indicating limited knowledge exchange between scientists and drinking water stakeholders. Increased accessibility and dissemination of research findings pertinent to the mountain pine beetle epidemic’s effects on drinking water quality and quantity is necessary for natural resource management. Recommendations for improved communication among scientists and drinking water stakeholders in particular and forest health in general include dispersal of non-academic research summaries, information exchange through existing media and community resources, demonstration projects, and information clearinghouses. This information provides a better understanding of the challenges, concerns, and first-hand experience of stakeholders of a landscape disturbance issue to apply this knowledge to enhance land management practice and how researchers on this overall project enhanced science communication efforts. 展开更多
关键词 Adaptive Capacity Climate Change Forested Watersheds Water Quality Water Quantity
下载PDF
Implications of de Facto Reuse on Future Regulatory Developments for Beaufort-Jasper Water & Sewer Authority in Okatie, South Carolina, USA
11
作者 Tricia H. Kilgore Shubhashini Oza +1 位作者 Jeremy Hatfield Katherine Y. Bell 《Journal of Environmental Protection》 2024年第2期173-192,共20页
A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resou... A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resource Recovery Facility (WRRF) effluent to waters that supply drinking water treatment plants has been documented by some communities. In the United States (US), among the top 25 most impacted drinking water treatment plants by upstream WRRF, 16% of the influent flow to the drinking water treatment plant under average streamflow and up to 100% under low-flow conditions is WRRF effluent. Currently, the full extent of de facto reuse in the US may be much higher because of population growth. The scenario is no different for Beaufort-Jasper Water and Sewer Authority (BJWSA) in South Carolina, US, with contributions to the Savannah River originating from numerous WRRF and other upstream dischargers. South Carolina coastal utilities such as BJSWA are considering direct and indirect potable reuse options, driven by disposal limitations and challenges. Currently, South Carolina does not have a framework, guidelines, or regulations for reuse, but discussions have started among the regulated community. In addition to understanding the extent of de facto reuse, the state will need to develop standards and best practices to enable future adoption of planned potable reuse solutions to water resources challenges. Such guidance should address human health risk management and technical considerations regarding treatment in addition to other factors, including source control, storage, fail-safe operation, monitoring, non-cost factors, and public acceptance. This study conducted a mapping assessment specific to BJWSA, sampled at four locations on Savannah River, and observed that de facto reuse is approximately 4.6% to 5.9% during low-flow months and is within the range generally observed nationwide. When coupled with evidence that planned potable reuse can improve human health and environmental risks, this practice is a meaningful option in the water supply portfolio for many utilities. 展开更多
关键词 Water Reuse De Facto Reuse Planned Potable Reuse Water Recycling Wastewater Derived Contaminants
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
12
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field Water Regimes Hysteretic Behaviors Soil Moisture Conditions Soil Water Characteristic Curves Specific Water Capacity Wetting-Drying Cycles
下载PDF
A study on the simulation of carbon and water fluxes of Dangxiong alpine meadow and its response to climate change 被引量:1
13
作者 Lingyun He Lei Zhong +3 位作者 Yaoming Ma Yuting Qi Jie Liu Peizhen Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期22-27,共6页
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th... The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau. 展开更多
关键词 Carbon and water flux Water use efficiency Alpine meadow Biome-BGC model Climate change
下载PDF
Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model
14
作者 CHEN Jiazhen KASIMU Alimujiang +3 位作者 REHEMAN Rukeya WEI Bohao HAN Fuqiang ZHANG Yan 《Journal of Arid Land》 SCIE CSCD 2024年第6期852-874,共23页
To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research ... To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research was based on land use/land cover(LULC),natural,socioeconomic,and accessibility data,utilizing the Patch-level Land Use Simulation(PLUS)and Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)models to dynamically assess LULC change and associated variations in water yield and water conservation.The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation.The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land,and decreasing in grassland,forest,and unused land.The unused land of all the three predicted scenarios of 2030(S1,a natural development scenario;S2,an ecological protection scenario;and S3,a cultivated land protection scenario)showed a decreasing trend.The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land;while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland.The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020.The areas with higher water yield values were primarily located in the northern section of the basin,which is characterized by higher altitude.Water conservation demonstrated a pattern of initial decrease followed by stabilization,with the northeastern region demonstrating higher water conservation values.In the projected LULC scenarios of 2030,the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2;while the level of water conservation across all three scenarios remained rather consistent.The results showed that Hejing County is an important water conservation function zone,and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected.The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management. 展开更多
关键词 PLUS model InVEST model Bosten Lake Basin water yield water conservation land-use simulation Geodetector
下载PDF
Chronological Study of Coal-seam Water and its Implication on Gas Production in the South Qinshui Basin
15
作者 CHEN Biying FANG Lujia +4 位作者 LANG Yunchao XU Sheng LIU Congqiang ZHANG Luyuan HOU Xiaolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期207-219,共13页
The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas ... The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas storage and production,this study collected coalbed methane co-produced water in the southeast Qinshui Basin and detected chemical and isotopic compositions,especially 36Cl and 129I concentrations.The calculated tracer ages of 129I(5.2–50.6 Ma)and 36Cl(0.13–0.76 Ma)are significantly younger than the age of coal-bearing formation(Pennsylvanian-Cisuralian),indicating freshwater recharge after coal deposition.The model that utilises 129I/I and 36Cl/Cl ratios to constrain the timing of recharge and the proportion of recharge water reveals that over 60%of pre-anthropogenic meteoric water entered coal seams since 10 Ma and mixed with residue initial deposition water,corresponding to the basin inversion in Cenozoic.The spatial distribution of major ion concentrations reveals the primary recharge pathway for meteoric water from coal outcrops at the eastern margin to the basin center.This study demonstrates the occurrence of higher gas production rates from wells that accept water recharge in recent times and suggests the possible potential of the non-stagnant zones for high gas production. 展开更多
关键词 CBM co-produced water iodine-129 chlorine-36 water chemistry Qinshui Basin
下载PDF
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
16
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope Water use efficiency THINNING Understory removal Photosynthetic capacity Needle water potential
下载PDF
Linkage between precipitation isotopes and water vapor sources in the monsoon margin:Evidence from arid areas of Northwest China
17
作者 CHEN Fenli ZHANG Qiuyan +3 位作者 WANG Shengjie CHEN Jufan GAO Minyan Mohd Aadil BHAT 《Journal of Arid Land》 SCIE CSCD 2024年第3期355-372,共18页
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u... The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area. 展开更多
关键词 water vapor monsoon margin stable water isotope transport trajectory air mass d-excess Δ18O δD
下载PDF
Decoupled water electrolysis:Flexible strategy for pure hydrogen production with small voltage inputs
18
作者 Kexin Zhou Jiahui Huang +3 位作者 Daili Xiang Aijiao Deng Jialei Du Hong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期340-356,共17页
Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the... Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved. 展开更多
关键词 Hydrogen production Conventional water splitting Decoupled water splitting Redox mediators Biomimetics
下载PDF
Monitoring Surface Water Change in Northeast China in 1999–2020:Evidence from Satellite Observation and Refined Classification
19
作者 LIU Kai ZHANG Dapeng +3 位作者 CHEN Tan CUI Peipei FAN Chenyu SONG Chunqiao 《Chinese Geographical Science》 SCIE CSCD 2024年第1期106-117,共12页
As a typical region with high water demand for agricultural production,understanding the spatiotemporal surface water changes in Northeast China is critical for water resources management and sustainable development.H... As a typical region with high water demand for agricultural production,understanding the spatiotemporal surface water changes in Northeast China is critical for water resources management and sustainable development.However,the long-term variation characteristics of surface water of different water body types in Northeast China remain rarely explored.This study investigated how surface water bodies of different types(e.g.,lake,reservoir,river,coastal aquaculture,marsh wetland,ephemeral water) changed during1999–2020 in Northeast China based on various remote sensing-based datasets.The results showed that surface water in Northeast China grew dramatically in the past two decades,with an equivalent area increasing from 24 394 km^(2) in 1999 to 34 595 km^(2) in 2020.The surge of ephemeral water is the primary driver of surface water expansion,which could ascribe to shifted precipitation pattern.Marsh wetlands,rivers,and reservoirs experienced a similar trend,with an approximate 20% increase at the interdecadal scale.By contrast,coastal aquacultures and natural lakes remain relatively stable.This study is expected to provide a more comprehensive investigation of the surface water variability in Northeast China and has important practical significance for the scientific management of different types of surface water. 展开更多
关键词 surface water spatiotemporal variation water body classification remote sensing Northeast China
下载PDF
Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system
20
作者 Ningning Yu Bingshuo Wang +3 位作者 Baizhao Ren Bin Zhao Peng Liu Jiwang Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3610-3621,共12页
The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ... The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize. 展开更多
关键词 integrated agronomic practice management water footprints nitrogen footprints water use efficiency nitrogen use efficiency yield
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部