In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics ...In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics and SS,and lots of pollutants difficult to degrade by microorganism. The process and operating parameters of project are optimized and debugged,and its economic and environmental benefits are analyzed.The results show that the process of coagulation sedimentation-hydrolytic acidification with aeration tank-biological aerated filter-active sand filter is applied in Gaoyang Sewage Treatment Plant. The design scale of sewage treatment plant is 120000 m^3/d. The influent is as following: COD is 669mg/L; SS is 424mg/L; NH_3-N is 8.83mg/L; TP is 6.03mg/L. After the process,the best removal rates of COD,SS,NH_3-N and TP are 93. 5%,98. 8%,97. 1% and 96. 2%,respectively. The various indexes of effluent water complied with standard A of the first order in Pollutants Emission Standard of Urban Wastewater Treatment Plant( GB 18918-2002). The processing cost is only 0. 807 yuan/m^3. As a result,the project construction and operation not only improve the environment,but also promote regional economic development. Process design and operating parameters provide an important reference value for the printing and dyeing wastewater treatment industry.展开更多
Sour water contains ammonia,carbon dioxide,and hydrogen sulfides,producing from oil refining,coking,and coal gasification.To reduce the energy consumption in sour water stripping,a novel process is proposed which inte...Sour water contains ammonia,carbon dioxide,and hydrogen sulfides,producing from oil refining,coking,and coal gasification.To reduce the energy consumption in sour water stripping,a novel process is proposed which integrates with the bottom flashing mechanical vapor recompression heat pump(MVRHP)for treating such wastewater.Here,Aspen PlusTM as a powerful set of chemical process simulation software is utilized to investigate the economy and feasibility of the novel process.Comparison of the results of two process simulations,it can be seen that it is possible to reduce the total annual cost by nearly 45%to adopt the novel process,despite the capital investment increase 45%more than the conventional process.Thus,the provided conceptual design will play a guiding role in the industrialization of the process.展开更多
This work develops a heuristic method for the design of batch water-using networks of multiple contaminants with regeneration unit based on the concepts of concentration potential. A water-using network involving rege...This work develops a heuristic method for the design of batch water-using networks of multiple contaminants with regeneration unit based on the concepts of concentration potential. A water-using network involving regeneration unit can be formed by adding the regenerated stream(s) into the network involving reuse only. In the design procedure of the network operated in a single batch mode, time is take n as the primary factor a nd con centration potentials as the secondary one. For the networks operated in a repeated mode, the design procedure is similar to that for continuous processes, besides designing the storage tanks with the rules proposed. Continuous regeneration unit is selected in this work. With the proposed method, the network structure corresponding to the minimum freshwater consumption can be obtained. It is shown that the method proposed in this article is simple, effective and has clear engineering meaning.展开更多
基金Supported by Key Project of National Water Pollution Control and Treatment Science and Technology(2014ZX07211-001)Demonstration Study on Integration Model of Environmental Public Utilities in Industrial Parks of Key Watershed(2014ZX07211-001-04)
文摘In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics and SS,and lots of pollutants difficult to degrade by microorganism. The process and operating parameters of project are optimized and debugged,and its economic and environmental benefits are analyzed.The results show that the process of coagulation sedimentation-hydrolytic acidification with aeration tank-biological aerated filter-active sand filter is applied in Gaoyang Sewage Treatment Plant. The design scale of sewage treatment plant is 120000 m^3/d. The influent is as following: COD is 669mg/L; SS is 424mg/L; NH_3-N is 8.83mg/L; TP is 6.03mg/L. After the process,the best removal rates of COD,SS,NH_3-N and TP are 93. 5%,98. 8%,97. 1% and 96. 2%,respectively. The various indexes of effluent water complied with standard A of the first order in Pollutants Emission Standard of Urban Wastewater Treatment Plant( GB 18918-2002). The processing cost is only 0. 807 yuan/m^3. As a result,the project construction and operation not only improve the environment,but also promote regional economic development. Process design and operating parameters provide an important reference value for the printing and dyeing wastewater treatment industry.
基金the support provided by the National Key R&D Program of China(No.2017YFB0602804)the National Natural Science Foundation of China(No.21878164)。
文摘Sour water contains ammonia,carbon dioxide,and hydrogen sulfides,producing from oil refining,coking,and coal gasification.To reduce the energy consumption in sour water stripping,a novel process is proposed which integrates with the bottom flashing mechanical vapor recompression heat pump(MVRHP)for treating such wastewater.Here,Aspen PlusTM as a powerful set of chemical process simulation software is utilized to investigate the economy and feasibility of the novel process.Comparison of the results of two process simulations,it can be seen that it is possible to reduce the total annual cost by nearly 45%to adopt the novel process,despite the capital investment increase 45%more than the conventional process.Thus,the provided conceptual design will play a guiding role in the industrialization of the process.
基金Supported by the Natural Science Foundation of Hebei Province(B2017202073)the Foundation of Educational Commission of Hebei Province(Z2017032)
文摘This work develops a heuristic method for the design of batch water-using networks of multiple contaminants with regeneration unit based on the concepts of concentration potential. A water-using network involving regeneration unit can be formed by adding the regenerated stream(s) into the network involving reuse only. In the design procedure of the network operated in a single batch mode, time is take n as the primary factor a nd con centration potentials as the secondary one. For the networks operated in a repeated mode, the design procedure is similar to that for continuous processes, besides designing the storage tanks with the rules proposed. Continuous regeneration unit is selected in this work. With the proposed method, the network structure corresponding to the minimum freshwater consumption can be obtained. It is shown that the method proposed in this article is simple, effective and has clear engineering meaning.