期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Flow Dynamics during the Hydrocarbon Exploitation for Prevention and Management of Water Venues in Oil Field: A Study Case of Crystal Field in Badila/Chad
1
作者 Issakha Tidjani Djimet Huguette Christiane Emvoutou +1 位作者 Nicodème Djiedeu Jean-Pierre Nguenang 《International Journal of Geosciences》 CAS 2024年第5期433-448,共16页
The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon productio... The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon production and the management of fluxes particularly the groundwater venues. A comprehensive study is thus conducted to develop a dynamic and analytic model for diagnosing the production performances with a particular view on the management of groundwater venues. The three main concerned reservoirs subdivided on subunits evidence their proper characteristics. The porous media, their densities, the internal flows and the water injection techniques such as water flooding were thus adopted. The oil viscosity variability within the reservoirs creates different levels of mobility between water and oil, highlighting the challenges of water management. The material balance model and the behavior of the well analysis were taken in consideration within the identified aquifer, emphasizing the importance of keeping the pressure through injection. The control of water productions, the management of the reservoir, the well strategical position and the specific completions lead to the model functioning. In addition, the CO log and the Pulsed Neutron indicate their limitations as a result of the water salinity and the porosity of the aquifer. The management of groundwater venues at Badila requires various approaches throughout the lifetime of the Crystal field such as the data acquisition and remediation actions and prevention, under a permanent monitoring of the dynamic fluxes in the reservoirs. 展开更多
关键词 Groundwater Venues Analytic and Dynamic Model water Flooding Optimization of Production
下载PDF
Hybrid low salinity water and surfactant process for enhancing heavy oil recovery
2
作者 ROLDÁN-CARRILLO Teresa CASTORENA-CORTES Gladys +3 位作者 SALAZAR CASTILLO Rodrigo Orlando HERNÁNDEZ-ESCOBEDO Luis OLGUÍN-LORA Patricia GACHUZ-MURO Herón 《Petroleum Exploration and Development》 SCIE 2023年第6期1466-1477,共12页
Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several st... Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant. 展开更多
关键词 low salinity water flooding surfactant flooding hybrid processes enhanced oil recovery TOMOGRAPHY
下载PDF
Effects of physical parameter range on dimensionless variable sensitivity in water flooding reservoirs 被引量:8
3
作者 Yu Hu Bai Jia Chun Li Ji Fu Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期385-391,共7页
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequentl... The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate. 展开更多
关键词 Physical parameter range Dimensionless variable Sensitivity analysis water flooding reservoir Two-phase flow in porous media
下载PDF
Efficiency of enhanced oil recovery by injection of low-salinity water in barium-containing carbonate reservoirs 被引量:2
4
作者 Hyemin Park Yongjun Park +1 位作者 Yeonkyeong Lee Wonmo Sung 《Petroleum Science》 SCIE CAS CSCD 2018年第4期772-782,共11页
When low-salinity water containing sulfate ions is injected into carbonate reservoirs, rock dissolution and in situ precipitation occur, altering rock permeability and wettability. Particularly, when barium ions are p... When low-salinity water containing sulfate ions is injected into carbonate reservoirs, rock dissolution and in situ precipitation occur, altering rock permeability and wettability. Particularly, when barium ions are present in formation water,they react chemically with SO;, and BaSO;is precipitated. These reactions can cause a serious impact on the efficiency of enhanced oil recovery(EOR). Therefore, the main purpose of this study was to identify EOR efficiency induced by lowsalinity waterflooding(LSWF) when Ba;is present in carbonate reservoirs. From the experimental results, it was confirmed that the permeability calculated by the measured pressure difference was improved because of rock dissolution predominating over in situ precipitation for the case of low Ba;concentrations. In the analysis of wettability alteration through the measurements of relative permeabilities before and after LSWF, the higher Ba;concentration case consumed more SO;in precipitating the BaSO;, resulting in weaker wettability alteration due to the reduction of sulfate activity.These phenomena ultimately influenced EOR efficiency, i.e., the oil recovery was greater for the lower Ba;concentration. 展开更多
关键词 Low-salinity water flooding BARIUM SULFATE Oil recovery CARBONATE
下载PDF
Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection 被引量:2
5
作者 Yulong YANG Weifeng YUAN +3 位作者 Jirui HOU Zhenjiang YOU Jun LI Yang LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第3期491-506,共16页
Fines migration induced by injection of low-salinity water(LSW) into porous media can lead to severe pore plugging and consequent permeability reduction. The deepbed filtration(DBF) theory is used to model the aforeme... Fines migration induced by injection of low-salinity water(LSW) into porous media can lead to severe pore plugging and consequent permeability reduction. The deepbed filtration(DBF) theory is used to model the aforementioned phenomenon, which allows us to predict the effluent concentration history and the distribution profile of entrapped particles. However, the previous models fail to consider the movement of the waterflood front. In this study, we derive a stochastic model for fines migration during LSW flooding, in which the Rankine-Hugoniot condition is used to calculate the concentration of detached particles behind and ahead of the moving water front. A downscaling procedure is developed to determine the evolution of pore-size distribution from the exact solution of a large-scale equation system. To validate the proposed model,the obtained exact solutions are used to treat the laboratory data of LSW flooding in artificial soil-packed columns. The tuning results show that the proposed model yields a considerably higher value of the coefficient of determination, compared with the previous models, indicating that the new model can successfully capture the effect of the moving water front on fines migration and precisely match the effluent history of the detached particles. 展开更多
关键词 low-salinity water(LSW)flooding fines migration stochastic model downscaling porous media waterflooding front exact solution
下载PDF
Theoretical exploration of water injection gravity flooding oil in ultra-deep fault-controlled fractured-cavity carbonate reservoirs
6
作者 YANG Xuewen WANG Rujun +3 位作者 DENG Xingliang LI Shiyin ZHANG Hui YAO Chao 《Petroleum Exploration and Development》 CSCD 2022年第1期133-143,共11页
Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil d... Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil displacement by water injection were carried out to find out water flooding mechanism in the fault-controlled fracture-cavity carbonate reservoir under complex flow state. On this basis, a mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flow has been established. Pilot water injection tests have been carried out to evaluate the effects of enhancing oil recovery by water injection. The results show that: fault-controlled fracture-cavity carbonate reservoir units can be divided into three types:the strong natural energy connected type, the weak natural energy connected type and the weak natural energy isolated type;the fault-fracture activity index of the fault-controlled fractured-cavity body can effectively characterize the connectivity of the reservoir and predict the effective direction of water injection;the mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flows can quantitatively describe the fluid flow law in the fracture-cavity body;the water injected into the fault-controlled fracture-cavity body is weakly affected by the capillary force of the lithologic body, and the oil-water movement is mainly dominated by gravity. The development modes of single well water injection, unit water injection,and single well high pressure water injection proposed based on the connection structure of fracture-cavity space and well storage space configuration are confirmed effective by pilot tests, with obvious water injection gravity flooding effect. 展开更多
关键词 Tarim Basin ORDOVICIAN fault-controlled carbonate reservoir fractured-cavity carbonate reservoir water flooding gravity flooding EOR
下载PDF
Application of New Water Flooding Characteristic Curve in the High Water-Cut Stage of an Oilfield
7
作者 Xi Zhang Changquan Wang +1 位作者 Hua Wu Xu Zhao 《Fluid Dynamics & Materials Processing》 EI 2022年第3期661-677,共17页
The oil production predicted by means of the conventional water-drive characteristic curve is typically affected by large deviations with respect to the actual value when the so-called high water-cut stage is entered.... The oil production predicted by means of the conventional water-drive characteristic curve is typically affected by large deviations with respect to the actual value when the so-called high water-cut stage is entered.In order to solve this problem,a new characteristic relationship between the relative permeability ratio and the average water saturation is proposed.By comparing the outcomes of different matching methods,it is verified that it can well reflect the variation characteristics of the relative permeability ratio curve.Combining the new formula with a reservoir engineering method,two new formulas are derived for the water flooding characteristic curve in the high water-cut stage.Their practicability is verified by using the production data of Mawangmiao and Xijiakou blocks.The results show that the error between the predicted cumulative oil production and production data of the two new water drive characteristic curves is less than the error between the B-type water drive characteristic curve and the other two water drive characteristic curves.It is concluded that the two new characteristic curves can be used to estimate more accurately the recoverable reserves,the final recovery and to estimate the effects of water flooding. 展开更多
关键词 water flooding characteristic curve high water cut period production dynamic prediction recoverable reserves water flooding
下载PDF
Mechanisms of remaining oil formation by water flooding and enhanced oil recovery by reversing water injection in fractured-vuggy reservoirs
8
作者 WANG Jing QI Xiangsheng +4 位作者 LIU Huiqing YANG Min LI Xiaobo LIU Hongguang ZHANG Tuozheng 《Petroleum Exploration and Development》 CSCD 2022年第5期1110-1125,共16页
To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D v... To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity. 展开更多
关键词 fractured-vuggy reservoir water flooding remaining oil reversing water injection stimulation mechanism enhanced oil recovery 3D printing
下载PDF
A production prediction method of single well in water flooding oilfield based on integrated temporal convolutional network model
9
作者 ZHANG Lei DOU Hongen +6 位作者 WANG Tianzhi WANG Hongliang PENG Yi ZHANG Jifeng LIU Zongshang MI Lan JIANG Liwei 《Petroleum Exploration and Development》 CSCD 2022年第5期1150-1160,共11页
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an... Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction. 展开更多
关键词 single well production prediction temporal convolutional network time series prediction water flooding reservoir
下载PDF
Effects of salinity and ionic composition of smart water on mineral scaling in carbonate reservoirs during water flooding
10
作者 GHASEMIAN Javad RIAHI Siavash 《Petroleum Exploration and Development》 CSCD 2021年第2期421-429,共9页
This work was conducted to study the risk of formation damage as the result of mineral scales deposition during smart waterflooding into carbonate core sample,as well as the influence of injected water salinity and io... This work was conducted to study the risk of formation damage as the result of mineral scales deposition during smart waterflooding into carbonate core sample,as well as the influence of injected water salinity and ionic composition on mineral scaling and precipitation.The reservoir flowing conditions were simulated by a new laboratory core-flooding procedure,which took into count of the effect of in-situ contact time(CT)of injected water and formation water on scaling.After the optimum CT was determined,extent of permeability decline was studied by the change in the salinity and ionic composition of injection seawater.The scaled core sample was analyzed visually by scanning electron microscopy(SEM)to study the crystal morphology of the scale.Under the experimental conditions,extent of permeability decline caused by CaSO_(4) and CaSO_(3) composite scales ranged from 61% to 79.1% of the initial permeability.The salinity and the ionic composition of injected smart water,and CT of the mixing waters had significant effects on the co-precipitation of CaSO_(4) and CaSO_(3) scales.The SEM images reveal that the loss of permeability is mainly caused by the accumulation and growth perpendicular to the pore wall of scale crystals. 展开更多
关键词 carbonate rock smart water flooding inorganic salt precipitation reservoir damage
下载PDF
Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection
11
作者 NEGASH Berihun Mamo YAW Atta Dennis 《Petroleum Exploration and Development》 2020年第2期383-392,共10页
As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this met... As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a physics-based extraction of features was proposed for fluid production forecasting to improve the prediction effect. The Bayesian regularization algorithm was selected as the training algorithm of the model. This algorithm, although taking longer time, can better generalize oil, gas and water production data sets. The model was evaluated by calculating mean square error and determination coefficient, drawing error distribution histogram and the cross-plot between simulation data and verification data etc. The model structure was trained, validated and tested with 90% of the historical data, and blindly evaluated using the remaining. The predictive model consumes minimal information and computational cost and is capable of predicting fluid production rate with a coefficient of determination of more than 0.9, which has the simulation results consistent with the practical data. 展开更多
关键词 neural networks machine learning attribute extraction Bayesian regularization algorithm production forecasting water flooding
下载PDF
Inter-well interferences and their influencing factors during water flooding in fractured-vuggy carbonate reservoirs
12
作者 WANG Jing ZHAO Wei +5 位作者 LIU Huiqing LIU Fangna ZHANG Tuozheng DOU Liangbin YANG Xinling LI Bo 《Petroleum Exploration and Development》 2020年第5期1062-1073,共12页
Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influenci... Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influencing factors during water flooding.Based on percolation theory,an inversion model for simulating waterflooding interferences was proposed to study the influence laws of different factors on interference characteristics.The results show that well spacing,permeability ratio,cave size,and cave location all affect the interference characteristics of water flooding.When the cave is located in high permeability fractures,or in the small well spacing direction,or close to the producer in an injection-production unit,the effects of water flooding are much better.When the large cave is located in the high-permeability or small well spacing direction,the well in the direction with lower permeability or smaller well spacing will see water breakthrough earlier.When the cave is in the higher permeability direction and the reserves between the water injector and producer differ greatly,the conductivity differences in different injection-production directions are favorable for water flooding.When the injection-production well pattern is constructed or recombined,it’s better to make the reserves of caves in different injection-production directions proportional to permeability,and inversely proportional to the well spacing.The well close to the cave should be a producer,and the well far from the cave should be an injector.Different ratios of cave reserves to fracture reserves correspond to different optimal well spacings and optimal permeability ratios.Moreover,both optimal well spacing and optimal permeability ratio increase as the ratio of cave reserves to fracture reserves increases. 展开更多
关键词 fractured-vuggy carbonate reservoir water flooding inter-well interference physical modeling experiment numerical inversion
下载PDF
Automatic measurement of three-phase contact angles in pore throats based on digital images
13
作者 ZANG Chuanzhen WANG Lida +3 位作者 ZHOU Kaihu YU Fuwei JIANG Hanqiao LI Junjian 《Petroleum Exploration and Development》 SCIE 2023年第2期442-449,共8页
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood... With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil. 展开更多
关键词 microfluidic model water flooding experiment digital image processing three-phase contact angle measure-ment method flow regime of the remaining oil
下载PDF
Dam Safety in Jordan: Factors Affecting Dam Safety, Responsibilities and Required Actions
14
作者 Elias Salamah Tayel El-Hasan Maher Abu-Jamah 《Engineering(科研)》 2023年第9期514-532,共19页
Dams in Jordan are exposed to a variety of natural and manmade threats like dams worldwide, but with some peculiar threats due to Jordan’s semi-arid climate, steep topography, tectonic activity, especially along the ... Dams in Jordan are exposed to a variety of natural and manmade threats like dams worldwide, but with some peculiar threats due to Jordan’s semi-arid climate, steep topography, tectonic activity, especially along the Jordan Rift Valley, position in the turbulent Middle East area, and weak socio-economic situation. In this study, the threats facing the main dams in Jordan are discussed and their sources are defined. The responsible agencies for reducing the threats and eliminating their sources are identified, as long as they are manmade. Natural threats are dealt with as superimposed and Jordan has to adapt to them by taking the necessary protective measures. The study concludes that all dams in Jordan are threatened by climate change and siltation and hence reduction in storage. The quality of stored water in dams, which are used for supplying drinking water such as Al-Wehdah, Wadi Al-Arab, Ziglab, Al-Wala and to a certain extent Al-Mujib is threatened by pollution due to urbanization, agricultural and industrial activities. All dams in Jordan are exposed to sabotage threats, which may negatively affect dams’ water quantities and quality. The stability of dams due to engineering failures is observed in the cases of Al-Kafrain, the left abutment of Al-Mujib, the spillway of Wheidi and eventually Al-Wala Dam. The latter was raised based on unique construction technology. The study recommends developing and implementing, as soon as possible, rigorous action plans to eliminate or, minimize the impacts of threats facing dams in Jordan. 展开更多
关键词 DAMS JORDAN SILTATION Flood water Stability Climate Change
下载PDF
On the Development of an Effective Pressure Driving System for Ultra-Low Permeability Reservoirs 被引量:2
15
作者 Yapu Zhang Zhengming Yang +2 位作者 Dajian Li Xuewei Liu Xinli Zhao 《Fluid Dynamics & Materials Processing》 EI 2021年第6期1067-1075,共9页
Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of ... Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of an adequate water injection system is considered.Due to the poor properties and weak seepage capacity of these reservoirs,the water injection pressure typically increases continuously during water flooding.In this research,the impact on such a process of factors as permeability,row spacing,and pressure gradient is evaluated experimentally using a high-pressure large-scale outcrop model.On this basis,a comprehensive evaluation coefficient is introduced able to account for the effective driving pressure. 展开更多
关键词 Ultra-low permeability reservoir physical simulation effective development water flooding effective driving coefficient
下载PDF
Residual oil evolution based on displacement characteristic curve 被引量:2
16
作者 Duanchuan Lyu Chengyan Lin +2 位作者 Lihua Ren Chunmei Dong Jinpeng Song 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期337-343,共7页
The purpose of this study was to determine the displacement and dynamic distribution characteristics of the remaining oil in the two development stages of water flooding and subsequent alkaline surfactant polymer(ASP)... The purpose of this study was to determine the displacement and dynamic distribution characteristics of the remaining oil in the two development stages of water flooding and subsequent alkaline surfactant polymer(ASP) flooding. The well pattern types in the water and ASP flooding stages are a longdistance determinant well pattern and short-distance five-point well pattern, respectively. The type A displacement characteristic curve can be obtained using the production data, and the slope of the straight-line section of the curve can reflect the displacement strength of the oil displacement agent. A numerical simulation was carried out based on the geological model. The results revealed that the injected water advances steadily with a large-distance determinant water-flooding well pattern. The single-well water production rate increases monotonically during water flooding. There is a significant positive correlation between the cumulative water-oil ratio and the formation parameter. Differential seepage between the oil and water phases is the main factor causing residual oil formation after water flooding, while the residual oil is still relatively concentrated. The effect of the chemical oildisplacement agent on improving the oil-water two-phase seepage flow has distinct stages during ASP flooding. The remaining oil production is extremely sporadic after ASP flooding. 展开更多
关键词 water flooding ASP flooding water-drive characteristic curve Residue oil Thick oil layer
下载PDF
Factors influencing oil recovery by surfactant-polymer flooding in conglomerate reservoirs and its quantitative calculation method 被引量:1
17
作者 Feng-Qi Tan Chun-Miao Ma +2 位作者 Jian-Hua Qin Xian-Kun Li Wen-Tao Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1198-1210,共13页
This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flood... This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flooding to SP flooding.The conglomerate reservoir of the Badaowan Formation in the seventh block of the Karamay Oilfield is selected as the research object to reveal the start-up mechanism of residual oil and determine the controlling factors of oil recovery through SP flooding experiments of natural cores and microetching models.The experimental results are used to identify four types of residual oil after water flooding in this conglomerate reservoir with a complex pore structure:oil droplets retained in pore throats by capillary forces,oil cluster trapped at the junction of pores and throats,oil film on the rock surface,isolated oil in dead-ends of flow channel.For the four types of residual oil identified,the SP solution can enhance oil recovery by enlarging the sweep volume and improving the oil displacement efficiency.First,the viscosity-increasing effect of the polymer can effectively reduce the permeability of the displacement liquid phase,change the oil-water mobility ratio,and increase the water absorption.Furthermore,the stronger the shear drag force of the SP solution,the more the crude oil in a porous medium is displaced.Second,the surfactant can change the rock wettability and reduce the absorption capacity of residual oil by lowering interfacial tension.At the same time,the emulsification further increases the viscosity of the SP solution,and the residual oil is recovered effectively under the combined effect of the above two factors.For the four start-up mechanisms of residual oil identified after water flooding,enlarging the sweep volume and improving the oil displacement efficiency are interdependent,but their contribution to enhanced oil recovery are different.The SP flooding system primarily enlarges the sweep volume by increasing viscosity of solution to start two kinds of residual oil such as oil droplet retained in pore throats and isolated oil in dead-ends of flow channel,and primarily improves the oil displacement efficiency by lowing interfacial tension of oil phase to start two kinds of residual oil such as oil cluster trapped at the junction of pores and oil film on the rock surface.On this basis,the experimental results of the oil displacement from seven natural cores show that the pore structure of the reservoir is the main factor influencing water flooding recovery,while the physical properties and original oil saturation have relatively little influence.The main factor influencing SP flooding recovery is the physical and chemical properties of the solution itself,which primarily control the interfacial tension and solution viscosity in the reservoir.The residual oil saturation after water flooding is the material basis of SP flooding,and it is the second-most dominant factor controlling oil recovery.Combined with the analysis results of the influencing factors and reservoir parameters,the water flooding recovery index and SP flooding recovery index are defined to further establish quantitative calculation models of oil recovery under different displacement modes.The average relative errors of the two models are 4.4%and 2.5%,respectively;thus,they can accurately predict the oil recovery of different displacement stages and the ultimate reservoir oil recovery. 展开更多
关键词 Conglomerate reservoir water flooding Surfactant-polymer flooding Residual oil type Influencing factor Enhanced oil recovery Computational model
下载PDF
Prediction of Low-Permeability Reservoirs Performances Using Long and Short-Term Memory Machine Learning
18
作者 Guowei Zhu Kangliang Guo +2 位作者 Haoran Yang Xinchen Gao Shuangshuang Zhang 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1521-1528,共8页
In order to overcome the typical limitations of numerical simulation methods used to estimate the production of low-permeability reservoirs,in this study,a new data-driven approach is proposed for the case of water-dr... In order to overcome the typical limitations of numerical simulation methods used to estimate the production of low-permeability reservoirs,in this study,a new data-driven approach is proposed for the case of water-driven hypo-permeable reservoirs.In particular,given the bottlenecks of traditional recurrent neural networks in handling time series data,a neural network with long and short-term memory is used for such a purpose.This method can reduce the time required to solve a large number of partial differential equations.As such,it can therefore significantly improve the efficiency in predicting the needed production performances.Practical examples about water-driven hypotonic reservoirs are provided to demonstrate the correctness of the method and its ability to meet the requirements for practical reservoir applications. 展开更多
关键词 water flooding flow in porous media DATA-DRIVEN LSTM CFD
下载PDF
Engineering Strategies on Flood Control in Middle Reach of Yangtze River, China
19
作者 Li Chang’an Yin Hongfu Zhang Yufen Gu Yansheng Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China 《Journal of Earth Science》 SCIE CAS CSCD 2000年第3期99-102,共4页
Flood disaster has been a serious hidden danger since the ancient time. The essential cause for the fact that floods have not been eliminated for hundreds of years is that time honored strategies do not suit the case... Flood disaster has been a serious hidden danger since the ancient time. The essential cause for the fact that floods have not been eliminated for hundreds of years is that time honored strategies do not suit the cases of flood prevention. In the view of geological environmental analyses of flood formation and from the synthesis of experiences gained in flood control in the past hundreds of years, sluggish draining of flood, silt sedimentation in channel and building levee blindly constitute the main cause of intractable flood for a long time in the middle reach of the Yangtze River. Draining away silt and water is the only way to stamping out flood disaster. Opening up artificial waterways for flood diversion, draining away the silt of channel into the polders, and storing the flood water are important engineering measures for the flood control and damage reduction. 展开更多
关键词 the middle reach of Yangtze River flood disaster opening artificial waterways for flood diversion draining away the silt of channel into the embarked lowlands storing flood water.
下载PDF
Evaluation of sour gas-low salinity waterflooding in carbonate reservoirs-A numerical simulation approach
20
作者 Lawrence Opoku Boampong Roozbeh Rafati Amin Sharifi Haddad 《Petroleum Research》 EI 2023年第2期131-150,共20页
Although significant amount of H_(2)S(sour gas)rich natural gas is estimated globally,but not much attention has been given to the application of H_(2)S in the oil recovery process.Recent studies on the use of H_(2)S ... Although significant amount of H_(2)S(sour gas)rich natural gas is estimated globally,but not much attention has been given to the application of H_(2)S in the oil recovery process.Recent studies on the use of H_(2)S in oil recovery processes showed that H_(2)S has the potential of improving the oil recovery,and it can be even more effective than using CO_(2) in some processes.H_(2)S can equally dissolve in the water,react with the reservoir rock to change its surface charge,porosity,and permeability.However,previous in-vestigations on H_(2)S oil recovery attributed the improved oil recoveries to the higher miscibility of H_(2)S in the oil,and the reduction in the oil viscosity.Therefore,there is limited understanding on the H_(2)S-oil-brine-rock geochemical interactions,and how they impact the oil recovery process.This study aims to investigate the interactions between H_(2)S,oil,and carbonate formations,and to assess how the combi-nation of H_(2)S and low salinity water can impact the wettability and porosity of the reservoirs.A triple layer surface complexation model was used to understand the influence of key parameters(e.g.,pressure,brine salinity,and composition)on the H_(2)S-brine-oil-rock interactions.Moreover,the effects of mineral content of the carbonate rock on H_(2)S interactions were studied.Thereafter,the results of the H_(2)S-oil-brine-rock interactions were compared with a study where CO_(2) was used as the injected gas.Results of the study showed that the seawater and its diluted forms yielded identicalζ-potential values of about 3.31 mV at a pH of 3.24.This indicates that at very low pH condition,pH controls the ζ-potential of the oil-brine interface regardless of the brine's ionic strength.The study further demonstrated that the presence of other minerals in the carbonate rock greatly reduced the calcite dissolution.For instance,the calcite dissolution was reduced by 4.5%when anhydrite mineral was present in the carbonate rock.Findings from the simulation also indicated that CO_(2) produced negative ζ-potential values for the car-bonate rocks,and these values were reduced by 18.4%-20% when H_(2)S was used as the gas phase.This implies that the H_(2)S shifted the carbonate rockζ-potentials towards positive.The outcomes of this study can be applied when designing CO_(2) flooding and CO_(2) storage where the gas stream contains H_(2)S gas since H_(2)S greatly influences the dissolution of the carbonate mineral. 展开更多
关键词 Low salinity water flooding Zeta potential Wettability alteration Carbonate reservoirs Carbon dioxide storage Sour gas injection
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部