The synergetic influence of silane-grafting and polar additives (EVA) on the water tree resistance of the low density polyethylene has been investigated. A series of samples obtained before and after hydration have ...The synergetic influence of silane-grafting and polar additives (EVA) on the water tree resistance of the low density polyethylene has been investigated. A series of samples obtained before and after hydration have been characterized by measuring gel content, infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric measurements. The results obtained clearly show that the silane condensation occurred and that the silane-grafting and polar additives have synergetic effects on the water tree resistance of LDPE with little influence on its dielectric properties, e.g. the dielectric breakdown strength, dielectric permittivity and loss tangent.展开更多
The diagnosis of water trees of cable insulation is of great importance as the water-treeing is a primary cause of aging breakdown for the middle voltage cables. In this paper, it is described how the water-tree-aged ...The diagnosis of water trees of cable insulation is of great importance as the water-treeing is a primary cause of aging breakdown for the middle voltage cables. In this paper, it is described how the water-tree-aged 10 kV XLPE cables were diagnosed. The cables were subjected to electrical stress of 5.9 kV/mm and a thermal load cycle in a curved water-filled tube for 3, 6 and 12 months of aging in accor- dance with the accelerated water-tree test method. The aged cables were used as the samples for water-tree diagnosis. First, the water-tree degraded cable, was charged by a DC voltage, and then the cable was grounded while a pulse voltage was applied to it for releasing the space charge trapped in the water trees. The amount of the space charge, which corresponds to the deterioration degree of the water trees, was calculated. The effects of DC voltage amplitude, pulse voltage repetition rate and aging conditions on the amount of the space charge were studied. Obtained results show that the amount of the space charge has a positive correlation with the applied DC voltage and the ag- ing time of the cables, and that a peak value of space charge appears with the increase of the pulse voltage repetition rate. An optimum pulse voltage repetition rate under which the space charge can be released rapidly is obtained. Furthermore, the releasing mechanism of space charge by the pulse voltage is discussed. Accumulated results show that the presented method has a high resolution for the diagnosis of water tree degradation degree and is expected to be applied in practice in future.展开更多
Nowadays, more and more electrical power is being distributed to customers by underground cables rather than overhead transmission lines due to their advantage of providing better protection in inclement weather. They...Nowadays, more and more electrical power is being distributed to customers by underground cables rather than overhead transmission lines due to their advantage of providing better protection in inclement weather. They also have significantly reduced electromagnetic field emission because of their copper shielding. But underground cables have larger capacitance than transmission lines per unit. Thus, ferroresonance is more likely to occur in distribution systems using underground cables. Moreover, soil humidity at a depth of one meter remains 100 percent for most of the year, a factor that risks the occurrence of water tree (WT) in cables. Consequently, both ferroresonance and WT are prone to occur in underground cable systems. The objective of this paper is to determine the relationship between ferroresonance and water tree. A test system was designed to simulate and analyze ferroresonance in a cable system caused by single-phase switch and water tree. Eight scenarios of water tree were compared in the simulation. There sponses of ferroresonance are presented in this paper and two common patterns are observed from the simulation results.展开更多
Water Tree is a corrosion phenomenon in cross-link polyethylene (XLPE) insulation. It is commonly found in underground cables. Water tree induced fault is difficult to detect due to its high impedance and difficult to...Water Tree is a corrosion phenomenon in cross-link polyethylene (XLPE) insulation. It is commonly found in underground cables. Water tree induced fault is difficult to detect due to its high impedance and difficult to model due to its random nature. In recent years, underground cables have become more popular in the power industry. They are resistant to environmental damage and has reduced space requirement. They are suitable to areas with high environment hazard or heavily populated areas where space is a constraining factor. As a result, studying and modeling the structure and effect of water tree become increasingly important. Since majority of the fault inducing water trees are vented trees which originated from the surface of the cable insulation, the mathematical model focuses on this particular type of water tree. To reduce the complexity of the model, the shape of the water tree afflicted region of the insulation is assumed to be ellipsoidal and the permittivity of the region is assumed to be linearly changing. Finite element analysis is used to analyze the water tree affected region. The resultant capacitance is calculated and compared with a physical model from Comsol. The result obtained using the proposed mathematical model and the result obtained using physical simulation through Comsol package agrees with each other. Hence, this method can be used to analyze the effect of water tree fault in large power systems.展开更多
Optimum growth and production of fruit crops is strongly linked to managing irrigation water. Various method of estimating tree water requirements have been utilized such as direct and indirect soil, water, and climat...Optimum growth and production of fruit crops is strongly linked to managing irrigation water. Various method of estimating tree water requirements have been utilized such as direct and indirect soil, water, and climatic measurements. Due to differences in fruit tree anatomical and morphological structures and their adaptation to excess and deficit soil water content, such estimates of irrigation water requirements may be more suitable for herbaceous plants but not as accurate for trees. Studies on temperate and tropical fruit trees, using apple (Malus domestica) and star-fruit (Averrhoa carambola), respectively, showed that tree water potential is highly correlated to soil water status. Irrigation based on climate data (ET) and monitoring of soil water resulted in no significant differences in soil or tree water status of orchard-grown fruit trees under temperate and subtropical climatic conditions. The results indicated the need for better understanding and utilization of tree physiological parameters for management of irrigation water of fruit crops. This will ultimately lead to achieving optimum yield and fruit quality while conserving water resources.展开更多
This essay directs at the water imagery of two poems Happy Rain on a Spring Night and A Drop Fell on the Apple Tree.Although living in different time and place, Chinese poet Du Fu and American poetess Emily Dickinson ...This essay directs at the water imagery of two poems Happy Rain on a Spring Night and A Drop Fell on the Apple Tree.Although living in different time and place, Chinese poet Du Fu and American poetess Emily Dickinson share some deep understanding of the water. This secret of water imagery is unveiled in this essay with the help of Archetypal Criticism, revealing its significance to the human beings as a race.展开更多
The response of olive orchard with same age and type to irrigation with treated municipal wastewater and freshwater was investigated in three years. Physical and chemical properties of the treated municipal wastewater...The response of olive orchard with same age and type to irrigation with treated municipal wastewater and freshwater was investigated in three years. Physical and chemical properties of the treated municipal wastewater reuse in agriculture (the effluent) produced by the Sheikh Ejleen wastewater treatment plant in Gaza Strip, freshwater, soil, and olive oil were determined and compared with Palestinian and international standards. The biological oxygen?demand (BOD) of Sheikh Ejleen effluent is 60 mg·l-1, which indicates low quality effluent. The results indicate that most of olive oil quality parameters—including heavy metals and trace elements for both fruits irrigated with treated wastewater or irrigated with freshwater—fall within the acceptable standard limit values. Moreover, soil analysis shows that organic content and cation exchange capacity were improved in soil irrigated with treated wastewater in comparison with that irrigated with freshwater. The results also show that there is no trace elements or heavy metals accumulation in soil.展开更多
From 2002 to 2003, based on the investigation of sample plots and stem analysis of remained plantation communities in the areas of returning farmland to forest in the 1980s in Datong County, Qinghai Province, this pap...From 2002 to 2003, based on the investigation of sample plots and stem analysis of remained plantation communities in the areas of returning farmland to forest in the 1980s in Datong County, Qinghai Province, this paper studies tree productivity and moisture potential productivity of six types of plantations on the land of returning farmland to forest, such as green poplar (Populus cathayana Rehd.) and shrub mixed forest, Asia white birch (Betula platyphylla) and China spruce (Picea asperata) mixed forest, Dahurian larch (Larix gmelinii) pure forest, China spruce pure forest and Asia white birch pure forest and so on. The results show that: in sub-humid region of Loess Plateau, 3 000 trees per hm2 is a proper standard of planting density. Under current condition, the productivity index of green poplar and shrub mixed forest, Asia white birch pure forest, China spruce pure forest, and Asia white birch and China spruce mixed forest with the density of 2 1003 333 trees per hm2 can serve as potential productivity standard of actual biomass of arbor established forest. In sub-humid area, Thornthwaite Model is adopted to estimate plant climate potential productivity, which is about 8 462 kghm2穉1. The actual potential water productive efficiency of Purplecone spruce (Picea purpurea) and Asia white birch pure established forest are 17.22 and 22.14 kgmm1hm2穉1 respectively, and that of green poplar and shrub mixed established forest, and Asia white birch and China spruce mixed established forest are 21.14 and 19.09 kgmm1hm2穉1 respectively. The potential productivity of green poplar and shrub mixed forest, Asia white birch and China spruce mixed forest, China spruce pure forest and Asia white birch pure forest which have grown into forest with the density of 3 000 trees per hm2 have attained or been close to that of local climax community, which is local maximum tree productivity at present. These types of forestation models are the developing direction of the returning farmland to forest project.展开更多
[ Objective] This study aimed to investigate the effects of different water and fertilizer combinations on apple saplings. [ Method] ' Tianhong 2' Fuji /SH40/Malus robusta Rehd. was used as the experimental material...[ Objective] This study aimed to investigate the effects of different water and fertilizer combinations on apple saplings. [ Method] ' Tianhong 2' Fuji /SH40/Malus robusta Rehd. was used as the experimental material to analyze the effects of different irrigation modes and combinations of basal fertilizer and dressing fertilizer on tree structure, leaf parameters and photosynthesis of apple saplings. [ Result] The results showed that different water and fertilizer combinations ex- hibited varying effects on tree structure, leaf parameters and photosynthesis of apple saplings. To be specific, applying 432 000 kg/hm2 basal fertilizer, 480 kg/hm2 urea and 915 kg/hmz organic fertilizer + 0 + 915 kg/hm2 organic fertilizer as dressing fertilizer, and 1% urea as leaf fertilizer was conducive to promoting growth of branches and leaves, increasing leaf thickness, individual leaf area and SPAD, and improving photosynthesis of apple saplings under half root irrigation and whole root irrigation conditions. In addition, the effects were more significant under whole root irrigation conditions. [ Conclusion] Selecting the appropriate water and fertilizer combination is conducive to the growth of apple saplings.展开更多
Super Absorbent Polyacrylate (SAP) hydrogels absorb and store water thereby aiding plant establishment when incurporated in the soil. The effect of cross-linked SAP hydrogel amendment on the performance of tree seedli...Super Absorbent Polyacrylate (SAP) hydrogels absorb and store water thereby aiding plant establishment when incurporated in the soil. The effect of cross-linked SAP hydrogel amendment on the performance of tree seedlings of Picea abies, Pinus sylivestris and Fagus sylvatica grown in temperate soils under water stress and non-water stress periods was investigated in a green house. The objective was to compare the root and shoot biomass of seedlings of the three species grown in sand, loam and clay soils amended with 0.4% w/w hydrogel in non water stress conditions as well as survival, root and shoot biomass after subjection to water stress. The seedlings were grown for 16 weeks, harvested and shoot as well as root biomass determined before water stress. The seedlings were also subjected to water stress and their biomass assessed at death following the water stress. The results showed that root and shoot biomass were generally higher in hydrogel amended soils compared to the controls. Root and shoot biomass of Fagus sylvatica was lower compared to Picea abies and Pinus sylivestris before water stress. The 0.4% hydrogel amendment significantly increased species’ survival in the different soils studied. Although root biomass was higher in hydrogel amended sandy soil compared to other soils, P. sylivestris and F. sylvatica shoot biomass were higher in hydrogel amended clay and loam soils compared to the sandy soil after water stress. Biomass was higher in sand compared to loam and clay soils under non-water and water stressed conditions. Since SAP hydrogel amendment improved the survival and biomass production of tree seedlings before and after water stress, use of SAPs could be promoted to enhance seedling production in water stress and non-water stress environments.展开更多
Agricultural activities that encourage slashing, burning and ploughing greatly affect the soil structure and soil organic matter on which soil water retention depends. In this study, we hypothesized that inclusion of ...Agricultural activities that encourage slashing, burning and ploughing greatly affect the soil structure and soil organic matter on which soil water retention depends. In this study, we hypothesized that inclusion of rotational leguminous tree species improves soil water retention in a semi-arid conservation agriculture system. In a study done in Kibwezi, semi-arid eastern Kenya, results showed that the amount of water retained in the different soil strata from plots with different tree species and tillage practices was highly significant (P = 0.032). Plots with planting basins and Gliricidia sepium and Faidherbia albida tree species retained more water in both the upper and lower strata. Plots with G. sepium tree species under planting basins and zero tillage under F. albida had significantly higher soil organic carbon levels than plots that were managed under ridges and ploughing (P = 0.002). On the other hand, bulk density in plots with planting basins and zero tillage and ridges ranged between 1.35 g/cm3 and 1.53 g/cm3. Conventional tillage plots had bulk density values of 1.65 g/cm3 and 1.72 g/cm3 in the upper and lower strata respectively. The time-dependent nature of rotational leguminous tree species on soil organic matter and soil water retention in the semi-arid conservation agriculture system highlights the importance of considering these species for improving organic carbon and water retention for improved crop production.展开更多
The effect of soil amendment with hydrogel on reducing water stress was tested for Siberian elm (Ulmus pumila) and silver maple (Acer saccharinum) saplings. The trees were planted in soils with one of two concentratio...The effect of soil amendment with hydrogel on reducing water stress was tested for Siberian elm (Ulmus pumila) and silver maple (Acer saccharinum) saplings. The trees were planted in soils with one of two concentrations of hydrogel (0.5% or 1% dry weight) as compared to the control soil (0% of hydrogel) and watered either daily, weekly, or bi-weekly. Growth was monitored by measuring height and stem diameter. Stress was monitored by measuring SPAD readings and normalized difference vegetation index (NDVI), as proxy measures of chlorophyll content and photosynthetic activity, respectively. Water stress decreased NDVI (p < 0.05) but did not have a significant effect on SPAD readings. Soil with 0.5% concentration of hydrogel was positively associated with greater height and NDVI (p < 0.01) for both maple and elm trees. Hydrogels had a species-specific effect on SPAD readings. The interaction between hydrogel concentration and the watering regime had a significant effect on the height and NDVI (p < 0.01) of elms, but not maples. The improved performance of water-stressed tree saplings in hydrogel-amended soils was presumably due to the ability of hydrogels to absorb and then gradually release water and nutrients. This is of special interest for urban foresters, because water stress and nutrient deficiency are two important growth-limiting factors for street trees.展开更多
The interests of vulnerable groups can’t be guaranteed due to their weaker capacity and the limited interests demand channels during the water pollution conflicts. The interest protection for the vulnerable people in...The interests of vulnerable groups can’t be guaranteed due to their weaker capacity and the limited interests demand channels during the water pollution conflicts. The interest protection for the vulnerable people in the water pollution conflicts has attracted attentions of the international scholars. The paper tries to construct the market mechanism which can make the vulnerable people to involve in the emission trading. The vulnerable people can buy American put option in the emission trading market. When the price of the emission runs below the contract price, the vulnerable people can get the benefit through executing the option. When the price of the emission runs above the contract price, the vulnerable people can give up the right. The binomial tree option pricing model can help the vulnerable people to make a decision through the analysis of the worth of the American put option.展开更多
文摘The synergetic influence of silane-grafting and polar additives (EVA) on the water tree resistance of the low density polyethylene has been investigated. A series of samples obtained before and after hydration have been characterized by measuring gel content, infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric measurements. The results obtained clearly show that the silane condensation occurred and that the silane-grafting and polar additives have synergetic effects on the water tree resistance of LDPE with little influence on its dielectric properties, e.g. the dielectric breakdown strength, dielectric permittivity and loss tangent.
基金Project supported by National Natural Science Foundation of China(51277131), State Key Laboratory Electrical Insulation and Power Equipment, State Key Laboratory Power System (SKLD 11KZ06).
文摘The diagnosis of water trees of cable insulation is of great importance as the water-treeing is a primary cause of aging breakdown for the middle voltage cables. In this paper, it is described how the water-tree-aged 10 kV XLPE cables were diagnosed. The cables were subjected to electrical stress of 5.9 kV/mm and a thermal load cycle in a curved water-filled tube for 3, 6 and 12 months of aging in accor- dance with the accelerated water-tree test method. The aged cables were used as the samples for water-tree diagnosis. First, the water-tree degraded cable, was charged by a DC voltage, and then the cable was grounded while a pulse voltage was applied to it for releasing the space charge trapped in the water trees. The amount of the space charge, which corresponds to the deterioration degree of the water trees, was calculated. The effects of DC voltage amplitude, pulse voltage repetition rate and aging conditions on the amount of the space charge were studied. Obtained results show that the amount of the space charge has a positive correlation with the applied DC voltage and the ag- ing time of the cables, and that a peak value of space charge appears with the increase of the pulse voltage repetition rate. An optimum pulse voltage repetition rate under which the space charge can be released rapidly is obtained. Furthermore, the releasing mechanism of space charge by the pulse voltage is discussed. Accumulated results show that the presented method has a high resolution for the diagnosis of water tree degradation degree and is expected to be applied in practice in future.
文摘Nowadays, more and more electrical power is being distributed to customers by underground cables rather than overhead transmission lines due to their advantage of providing better protection in inclement weather. They also have significantly reduced electromagnetic field emission because of their copper shielding. But underground cables have larger capacitance than transmission lines per unit. Thus, ferroresonance is more likely to occur in distribution systems using underground cables. Moreover, soil humidity at a depth of one meter remains 100 percent for most of the year, a factor that risks the occurrence of water tree (WT) in cables. Consequently, both ferroresonance and WT are prone to occur in underground cable systems. The objective of this paper is to determine the relationship between ferroresonance and water tree. A test system was designed to simulate and analyze ferroresonance in a cable system caused by single-phase switch and water tree. Eight scenarios of water tree were compared in the simulation. There sponses of ferroresonance are presented in this paper and two common patterns are observed from the simulation results.
文摘Water Tree is a corrosion phenomenon in cross-link polyethylene (XLPE) insulation. It is commonly found in underground cables. Water tree induced fault is difficult to detect due to its high impedance and difficult to model due to its random nature. In recent years, underground cables have become more popular in the power industry. They are resistant to environmental damage and has reduced space requirement. They are suitable to areas with high environment hazard or heavily populated areas where space is a constraining factor. As a result, studying and modeling the structure and effect of water tree become increasingly important. Since majority of the fault inducing water trees are vented trees which originated from the surface of the cable insulation, the mathematical model focuses on this particular type of water tree. To reduce the complexity of the model, the shape of the water tree afflicted region of the insulation is assumed to be ellipsoidal and the permittivity of the region is assumed to be linearly changing. Finite element analysis is used to analyze the water tree affected region. The resultant capacitance is calculated and compared with a physical model from Comsol. The result obtained using the proposed mathematical model and the result obtained using physical simulation through Comsol package agrees with each other. Hence, this method can be used to analyze the effect of water tree fault in large power systems.
文摘Optimum growth and production of fruit crops is strongly linked to managing irrigation water. Various method of estimating tree water requirements have been utilized such as direct and indirect soil, water, and climatic measurements. Due to differences in fruit tree anatomical and morphological structures and their adaptation to excess and deficit soil water content, such estimates of irrigation water requirements may be more suitable for herbaceous plants but not as accurate for trees. Studies on temperate and tropical fruit trees, using apple (Malus domestica) and star-fruit (Averrhoa carambola), respectively, showed that tree water potential is highly correlated to soil water status. Irrigation based on climate data (ET) and monitoring of soil water resulted in no significant differences in soil or tree water status of orchard-grown fruit trees under temperate and subtropical climatic conditions. The results indicated the need for better understanding and utilization of tree physiological parameters for management of irrigation water of fruit crops. This will ultimately lead to achieving optimum yield and fruit quality while conserving water resources.
文摘This essay directs at the water imagery of two poems Happy Rain on a Spring Night and A Drop Fell on the Apple Tree.Although living in different time and place, Chinese poet Du Fu and American poetess Emily Dickinson share some deep understanding of the water. This secret of water imagery is unveiled in this essay with the help of Archetypal Criticism, revealing its significance to the human beings as a race.
文摘The response of olive orchard with same age and type to irrigation with treated municipal wastewater and freshwater was investigated in three years. Physical and chemical properties of the treated municipal wastewater reuse in agriculture (the effluent) produced by the Sheikh Ejleen wastewater treatment plant in Gaza Strip, freshwater, soil, and olive oil were determined and compared with Palestinian and international standards. The biological oxygen?demand (BOD) of Sheikh Ejleen effluent is 60 mg·l-1, which indicates low quality effluent. The results indicate that most of olive oil quality parameters—including heavy metals and trace elements for both fruits irrigated with treated wastewater or irrigated with freshwater—fall within the acceptable standard limit values. Moreover, soil analysis shows that organic content and cation exchange capacity were improved in soil irrigated with treated wastewater in comparison with that irrigated with freshwater. The results also show that there is no trace elements or heavy metals accumulation in soil.
基金Supported by the National Natural Science Foundation of China (Grant No.30371172) and the Tenth Five-year Plan National Key Projects in Science and Technology of China (Grant No. 2001BA510B0102)
文摘From 2002 to 2003, based on the investigation of sample plots and stem analysis of remained plantation communities in the areas of returning farmland to forest in the 1980s in Datong County, Qinghai Province, this paper studies tree productivity and moisture potential productivity of six types of plantations on the land of returning farmland to forest, such as green poplar (Populus cathayana Rehd.) and shrub mixed forest, Asia white birch (Betula platyphylla) and China spruce (Picea asperata) mixed forest, Dahurian larch (Larix gmelinii) pure forest, China spruce pure forest and Asia white birch pure forest and so on. The results show that: in sub-humid region of Loess Plateau, 3 000 trees per hm2 is a proper standard of planting density. Under current condition, the productivity index of green poplar and shrub mixed forest, Asia white birch pure forest, China spruce pure forest, and Asia white birch and China spruce mixed forest with the density of 2 1003 333 trees per hm2 can serve as potential productivity standard of actual biomass of arbor established forest. In sub-humid area, Thornthwaite Model is adopted to estimate plant climate potential productivity, which is about 8 462 kghm2穉1. The actual potential water productive efficiency of Purplecone spruce (Picea purpurea) and Asia white birch pure established forest are 17.22 and 22.14 kgmm1hm2穉1 respectively, and that of green poplar and shrub mixed established forest, and Asia white birch and China spruce mixed established forest are 21.14 and 19.09 kgmm1hm2穉1 respectively. The potential productivity of green poplar and shrub mixed forest, Asia white birch and China spruce mixed forest, China spruce pure forest and Asia white birch pure forest which have grown into forest with the density of 3 000 trees per hm2 have attained or been close to that of local climax community, which is local maximum tree productivity at present. These types of forestation models are the developing direction of the returning farmland to forest project.
基金Supported by National Modern Agricultural(Apple)Industry Technology System of China(CARS-28)
文摘[ Objective] This study aimed to investigate the effects of different water and fertilizer combinations on apple saplings. [ Method] ' Tianhong 2' Fuji /SH40/Malus robusta Rehd. was used as the experimental material to analyze the effects of different irrigation modes and combinations of basal fertilizer and dressing fertilizer on tree structure, leaf parameters and photosynthesis of apple saplings. [ Result] The results showed that different water and fertilizer combinations ex- hibited varying effects on tree structure, leaf parameters and photosynthesis of apple saplings. To be specific, applying 432 000 kg/hm2 basal fertilizer, 480 kg/hm2 urea and 915 kg/hmz organic fertilizer + 0 + 915 kg/hm2 organic fertilizer as dressing fertilizer, and 1% urea as leaf fertilizer was conducive to promoting growth of branches and leaves, increasing leaf thickness, individual leaf area and SPAD, and improving photosynthesis of apple saplings under half root irrigation and whole root irrigation conditions. In addition, the effects were more significant under whole root irrigation conditions. [ Conclusion] Selecting the appropriate water and fertilizer combination is conducive to the growth of apple saplings.
文摘Super Absorbent Polyacrylate (SAP) hydrogels absorb and store water thereby aiding plant establishment when incurporated in the soil. The effect of cross-linked SAP hydrogel amendment on the performance of tree seedlings of Picea abies, Pinus sylivestris and Fagus sylvatica grown in temperate soils under water stress and non-water stress periods was investigated in a green house. The objective was to compare the root and shoot biomass of seedlings of the three species grown in sand, loam and clay soils amended with 0.4% w/w hydrogel in non water stress conditions as well as survival, root and shoot biomass after subjection to water stress. The seedlings were grown for 16 weeks, harvested and shoot as well as root biomass determined before water stress. The seedlings were also subjected to water stress and their biomass assessed at death following the water stress. The results showed that root and shoot biomass were generally higher in hydrogel amended soils compared to the controls. Root and shoot biomass of Fagus sylvatica was lower compared to Picea abies and Pinus sylivestris before water stress. The 0.4% hydrogel amendment significantly increased species’ survival in the different soils studied. Although root biomass was higher in hydrogel amended sandy soil compared to other soils, P. sylivestris and F. sylvatica shoot biomass were higher in hydrogel amended clay and loam soils compared to the sandy soil after water stress. Biomass was higher in sand compared to loam and clay soils under non-water and water stressed conditions. Since SAP hydrogel amendment improved the survival and biomass production of tree seedlings before and after water stress, use of SAPs could be promoted to enhance seedling production in water stress and non-water stress environments.
文摘Agricultural activities that encourage slashing, burning and ploughing greatly affect the soil structure and soil organic matter on which soil water retention depends. In this study, we hypothesized that inclusion of rotational leguminous tree species improves soil water retention in a semi-arid conservation agriculture system. In a study done in Kibwezi, semi-arid eastern Kenya, results showed that the amount of water retained in the different soil strata from plots with different tree species and tillage practices was highly significant (P = 0.032). Plots with planting basins and Gliricidia sepium and Faidherbia albida tree species retained more water in both the upper and lower strata. Plots with G. sepium tree species under planting basins and zero tillage under F. albida had significantly higher soil organic carbon levels than plots that were managed under ridges and ploughing (P = 0.002). On the other hand, bulk density in plots with planting basins and zero tillage and ridges ranged between 1.35 g/cm3 and 1.53 g/cm3. Conventional tillage plots had bulk density values of 1.65 g/cm3 and 1.72 g/cm3 in the upper and lower strata respectively. The time-dependent nature of rotational leguminous tree species on soil organic matter and soil water retention in the semi-arid conservation agriculture system highlights the importance of considering these species for improving organic carbon and water retention for improved crop production.
文摘The effect of soil amendment with hydrogel on reducing water stress was tested for Siberian elm (Ulmus pumila) and silver maple (Acer saccharinum) saplings. The trees were planted in soils with one of two concentrations of hydrogel (0.5% or 1% dry weight) as compared to the control soil (0% of hydrogel) and watered either daily, weekly, or bi-weekly. Growth was monitored by measuring height and stem diameter. Stress was monitored by measuring SPAD readings and normalized difference vegetation index (NDVI), as proxy measures of chlorophyll content and photosynthetic activity, respectively. Water stress decreased NDVI (p < 0.05) but did not have a significant effect on SPAD readings. Soil with 0.5% concentration of hydrogel was positively associated with greater height and NDVI (p < 0.01) for both maple and elm trees. Hydrogels had a species-specific effect on SPAD readings. The interaction between hydrogel concentration and the watering regime had a significant effect on the height and NDVI (p < 0.01) of elms, but not maples. The improved performance of water-stressed tree saplings in hydrogel-amended soils was presumably due to the ability of hydrogels to absorb and then gradually release water and nutrients. This is of special interest for urban foresters, because water stress and nutrient deficiency are two important growth-limiting factors for street trees.
文摘The interests of vulnerable groups can’t be guaranteed due to their weaker capacity and the limited interests demand channels during the water pollution conflicts. The interest protection for the vulnerable people in the water pollution conflicts has attracted attentions of the international scholars. The paper tries to construct the market mechanism which can make the vulnerable people to involve in the emission trading. The vulnerable people can buy American put option in the emission trading market. When the price of the emission runs below the contract price, the vulnerable people can get the benefit through executing the option. When the price of the emission runs above the contract price, the vulnerable people can give up the right. The binomial tree option pricing model can help the vulnerable people to make a decision through the analysis of the worth of the American put option.