The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer Sys...The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin.展开更多
This paper deals with the assessment of main controls on groundwater chemistry in the aquifer system of Ooeides, Orestiada Region, NE Greece, contributing to the assessment of groundwater and surface water interaction...This paper deals with the assessment of main controls on groundwater chemistry in the aquifer system of Ooeides, Orestiada Region, NE Greece, contributing to the assessment of groundwater and surface water interaction, as well as water-rock interactions in the study area. Statistical analysis and relevant hydrochemical plots were employed in the analysis of groundwater samples from the study area during sampling campaigns for the years 2018, 2019 and 2020. The process included the collection and analysis of hydrochemical, hydrological and hydrogeological information and data regarding the aquifer system of the study area. Based on the statistical processing and the spatial analysis of the relevant results of the research, interesting and useful information emerged regarding: i) the recharge procedure of the aquifer from surface water of rivers and streams in the study area;ii) the relationship of groundwater composition with the type of rock through which water flows;iii) the impact on groundwater quality from anthropogenic activities (cultivation activities, municipal waste). From the elaboration of all the above, interesting findings and suggestions came out, which are considered useful for the optimal management of the hydrogeological regime of the study area.展开更多
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo...Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.展开更多
The main processes of interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. Th...The main processes of interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. These processes include the intrusion of the Kuroshio water into the shelf area of the ECS, the entrainment of the shelf water into the Kuroshio, the seasonal process in the southern shelf area of the ECS controlled alternatively by the Taiwan Strait water and the Kuroshio water intruding into the shelf area, the interaction between the Kuroshio branch water, shelf mixed water and modified coastal water in the northeastern ECS, the water-exchange between the HS and ECS and the spread of the Changjiang diluted water.展开更多
The separation of the Kuroshio water in the northeastern East China Sea and its interaction with the shelfwater are analysed on the basis of CTD data and the observations of 11 satellite-tracked surface drifters condu...The separation of the Kuroshio water in the northeastern East China Sea and its interaction with the shelfwater are analysed on the basis of CTD data and the observations of 11 satellite-tracked surface drifters conducted bythe R/V Onnuri of Korea Ocean Research & Development institute during August 25 - September 7, 1994 and thenthe formation process of the Tsushima Current in summer is also discussed.展开更多
The present study investigates the interaction of steep waves with semi-circular breakwater with the complex plane's Cauchy boundary integral theorem. The boundary integral method is used to transform the calculat...The present study investigates the interaction of steep waves with semi-circular breakwater with the complex plane's Cauchy boundary integral theorem. The boundary integral method is used to transform the calculation in fluid domain into its boundary alone. In the calculation the computation domain is moved with the propagation of waves. A numerical solution is obtained for incident Stokes waves passing the submerged obstacles. This method has been extended to the calculation of wave run-up on a slope for estimating wave overtopping.展开更多
The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw...The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified.展开更多
The torsional characteristics of single walled carbon nanotube(SWCNT) with water interactions are studied in this work using molecular dynamics simulation method. The torsional properties of carbon nanotubes(CNTs) in ...The torsional characteristics of single walled carbon nanotube(SWCNT) with water interactions are studied in this work using molecular dynamics simulation method. The torsional properties of carbon nanotubes(CNTs) in a hydrodynamic environment such as water are critical for its key role in determining the lifetime and stability of CNT based nano-fluidic devices. The effect of chirality, defects and the density of water encapsulation is studied by subjecting the SWCNT to torsion. The findings show that the torsional strength of SWCNT decreases due to interaction of water molecules and presence of defects in the SWCNT. Additionally,for the case of water molecules encapsulated inside SWCNT, the torsional response depends on the density of packing of water molecules. Our findings and conclusions obtained from this paper is expected to further compliment the potential applications of CNTs as promising candidates for applications in nano-biological and nano-fluidic devices.展开更多
Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of ...Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale.展开更多
A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid bou...A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement.展开更多
Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararnet...Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararneters in this article. Based on these extending methods, the effect of varying freshwater consumption and regenerated water flow rate on the optimizing results are investigated. The interactions of parameters of regeneration recycling systems are summarized. Finally, all the conclusions are illustrated from the results of mathematical programming through an example.展开更多
Gneiss\|distilled water interaction at room temperature was investigated with batch\|reactors to study water\|rock reaction and geochemical evolution of the aqueous phase with time. The ion concentrations in water wer...Gneiss\|distilled water interaction at room temperature was investigated with batch\|reactors to study water\|rock reaction and geochemical evolution of the aqueous phase with time. The ion concentrations in water were controlled not only by the dissolution of primary minerals, but also by the precipitation of secondary minerals. The decreasing fraction sizes of gneiss could favor dissolution and precipitation simultaneously. Ca\+\{2+\} and K\++ were the major cations, and HCO\+-\-3 was the major anion in water. All the ions except Ca\+\{2+\} increased in concentration with time. The Ca\+\{2+\} release from the rock to the aqueous phase was initially much faster than the release of K\++, Na\++ and Mg\+\{2+\}. But after about 5-24 hours, the Ca\+\{2+\} concentrations in water decreased very slowly with time and became relatively stable. During the experiment, the water varied from the Ca\|(K)\|HCO\-3\|type water to the K\|Ca\|HCO\-3\|type water, and then to the K\|(Ca,Na)\|HCO\-3\|type water. The water\|gneiss interaction was dominated by the dissolution of K\|feldspar in the solution. The remaining secondary minerals were mainly kaolinite, illite and K(Mg)\|mica.展开更多
Water distribution networks are essential components of water supply systems. The combination of pipe structural deterioration and mechanics leads to the failure of pipelines. A physical model for estimating the pipe ...Water distribution networks are essential components of water supply systems. The combination of pipe structural deterioration and mechanics leads to the failure of pipelines. A physical model for estimating the pipe failure must include both the pipe deterioration model and mechanics model. Winkler pipe-soil interaction (WPSI), an analytical mechanics model developed by Rajani and Tesfamariam (2004), takes external and internal loads, temperature changes, loss of bedding support, and the elastoplastic effect of soil into consideration. Based on the WPSI model, a method to evaluate the elastic and plastic areas was proposed in the present study. An FEM model based on pipe-soil interaction (PSI) element was used to verify the analytical model. Sensitivity analyses indicate that the soft soil, long pipe and high temperature induced the axial plastic deformation more likely, which, however, may not occur in normal scenarios. The soft soil, pipes in small diameters, long unsupported bedding are prone to form flexural plastic area. The results show that the pipes subjected to the same loads have smaller stresses in the elastoplastic analysis than elastic analysis. The difference, however, is slight.展开更多
The interactions on gold active and migratory quantities and rates between tuffaceous slate and solu tions with different compositions were experimentally studied at 200 ℃, 20 MPa, in a high pressure apparatus. After...The interactions on gold active and migratory quantities and rates between tuffaceous slate and solu tions with different compositions were experimentally studied at 200 ℃, 20 MPa, in a high pressure apparatus. After reaction, tuffaceous slate became light colored and soft, and its mass density reduced. The amount of gold extracted from tuffaceous slate ranges widely, from 0 027 to 0 234 μg/g. Chlorine solution may activate appreciable amount of gold, and the gold migratory rate is high enough, from 50 70% to 92 30%, which reveals that sulphur and chlorine work together in solutions to accelerate gold activation and migration, and to realize gold mineralization in favorable places.展开更多
Drinking water supplies in Ulaanbaatar, the capital of Mongolia, are completely dependent on groundwater sourced from pumping wells located in an alluvial plain of the Tuul River which flows through Ulaanbaatar. The i...Drinking water supplies in Ulaanbaatar, the capital of Mongolia, are completely dependent on groundwater sourced from pumping wells located in an alluvial plain of the Tuul River which flows through Ulaanbaatar. The interaction between groundwater in the alluvial plain and river surface water was investigated using a hydrological and multi-tracers approach. The observed groundwater contour map clearly shows that the Tuul River recharges the floodplain groundwater and groundwater flows from east to west. The similarity of chemical and stable isotopic compositions suggests that groundwater is mainly recharged by Tuul River water in the vicinity of the river. In addition, considering groundwater contours and chemical composition, groundwater in the northern and southern mountain sides contribute to floodplain groundwater. Stable isotopic information suggests that winter season precipita- tion also contributes to the groundwater, because groundwater in a specific region has a considerably lower isotopic ratio. Using the End Member Mixing Analysis applying oxygen-18, SiO2 and HCO3 as tracers, the contribution ratios of the Tuul River, groundwater in the northem and southern mountain regions, and winter season precipitation to floodplain groundwater are esti- mated to be 58% to 85%, 1% to 54%, 0% to 16%, and 0% to 12%, respectively.展开更多
In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation...In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.展开更多
Two-dimensional materials(2DMs) have attracted substantial attention due to their abundant active sites and their ultrahigh surface area for different catalytic applications due to the high lateral-longitudinal ratio....Two-dimensional materials(2DMs) have attracted substantial attention due to their abundant active sites and their ultrahigh surface area for different catalytic applications due to the high lateral-longitudinal ratio. Transition metal dichalcogenides(TMDs), especially MoS2, as one of the 2DMs most often studied, have shown superior activity in electrochemical applications. Recently, combinations of different 2DMs have been widely studied, and they appear to be the most promising strategy available to develop state of the art catalysts for different reactions.In this article, we review the interactions between MoS2 and other materials as well as the novel assembly induced phase transitions of TMDs and their underlying mechanisms. Several methods for inducing the phase transition of TMDs by building MoS2-based heterostructures have been introduced. The electronic coupling between these counterparts has significantly enhanced their conductivity and optimized the energy states of the materials, thus introducing enhanced activity as compared to their original counterparts. The ideas summarized in this article may shed new light on and help to develop next-generation green energy materials by designing and constructing highly active two-dimensional catalysts for efficient water splitting.展开更多
Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling...Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling was analyzed by scanning electron microscopy(SEM)and energy dispersive X-ray detector(EDX).The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction.Some calcium ions of calcium carbonate crystal are replaced by zinc ions,the growth of aragonite crystal nucleus is retarded,and the transition of calcium carbonate from aragonite to calcite is hampered.展开更多
This paper presents a systematic model test program to assess the uncertainty of the ship-bank interaction forces,using the planar motion mechanism(PMM)system in a circulating water channel(CWC).Therefore,the uncertai...This paper presents a systematic model test program to assess the uncertainty of the ship-bank interaction forces,using the planar motion mechanism(PMM)system in a circulating water channel(CWC).Therefore,the uncertainties due to ship-bank distance and water depth are considered,and they are calculated via the partial differentials of the regression formulae based on the test data.The general part of the uncertainty analysis(UA)is performed according to the ITTC recommended procedure 7.5-02-06.04,while the uncertainty of speed is identified as the bias limit due to the flow velocity maldistribution in the CWC.In each example test for the UA of ship-bank interaction forces,12 repeated measurements were conducted.Results from the UA show that the contribution of water depth error and flow velocity maldistribution to the total uncertainty is noticeable,and the paper explains how they increase with the change of the test conditions.The present study will be useful in understanding the uncertainty regarding the ship-bank interaction force measurement in a CWC.展开更多
Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for ...Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for wave−permeable breakwater−porous seabed interactions is built based on an improved N−S equation.A numerical wave flume is constructed,and numerical studies are carried out by applying the finite difference method.In combination with a physical model test,the accuracy of the numerical simulation results is verified by comparing the calculated and measured values of wave height at measurement points and the seepage pressure within the breakwater and seabed.On this basis,the characteristics of the surrounding wave field and the internal flow field of the pore structure,as well as the evolution process of the fluctuating pore water pressure inside the breakwater and seabed,are further analyzed.The spatial distribution of the maximum fluctuating pore water pressure in the breakwater is compared between two cases by considering whether the seabed is permeable,and then the effect of seabed permeability on the dynamic pore water pressure in the breakwater is clarified.This study attempts to provide a reference for breakwater design and the protection of nearby seabeds.展开更多
文摘The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin.
文摘This paper deals with the assessment of main controls on groundwater chemistry in the aquifer system of Ooeides, Orestiada Region, NE Greece, contributing to the assessment of groundwater and surface water interaction, as well as water-rock interactions in the study area. Statistical analysis and relevant hydrochemical plots were employed in the analysis of groundwater samples from the study area during sampling campaigns for the years 2018, 2019 and 2020. The process included the collection and analysis of hydrochemical, hydrological and hydrogeological information and data regarding the aquifer system of the study area. Based on the statistical processing and the spatial analysis of the relevant results of the research, interesting and useful information emerged regarding: i) the recharge procedure of the aquifer from surface water of rivers and streams in the study area;ii) the relationship of groundwater composition with the type of rock through which water flows;iii) the impact on groundwater quality from anthropogenic activities (cultivation activities, municipal waste). From the elaboration of all the above, interesting findings and suggestions came out, which are considered useful for the optimal management of the hydrogeological regime of the study area.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B1515120072)the Natural Science Foundation of China(22279096 and T2241003)the Fundamental Research Funds for the Central Universities(WUT:2023IVA094).
文摘Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.
基金National Thematic Project of Marine SurveysNational Major Fundamental ResearchDevelopment Project of China under contract No.G1999-043802.
文摘The main processes of interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. These processes include the intrusion of the Kuroshio water into the shelf area of the ECS, the entrainment of the shelf water into the Kuroshio, the seasonal process in the southern shelf area of the ECS controlled alternatively by the Taiwan Strait water and the Kuroshio water intruding into the shelf area, the interaction between the Kuroshio branch water, shelf mixed water and modified coastal water in the northeastern ECS, the water-exchange between the HS and ECS and the spread of the Changjiang diluted water.
文摘The separation of the Kuroshio water in the northeastern East China Sea and its interaction with the shelfwater are analysed on the basis of CTD data and the observations of 11 satellite-tracked surface drifters conducted bythe R/V Onnuri of Korea Ocean Research & Development institute during August 25 - September 7, 1994 and thenthe formation process of the Tsushima Current in summer is also discussed.
文摘The present study investigates the interaction of steep waves with semi-circular breakwater with the complex plane's Cauchy boundary integral theorem. The boundary integral method is used to transform the calculation in fluid domain into its boundary alone. In the calculation the computation domain is moved with the propagation of waves. A numerical solution is obtained for incident Stokes waves passing the submerged obstacles. This method has been extended to the calculation of wave run-up on a slope for estimating wave overtopping.
基金supported by the National Natural Science Foundation of China(30030090) Jiangsu Key Project of Science and Technology(BE2001331).
文摘The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified.
文摘The torsional characteristics of single walled carbon nanotube(SWCNT) with water interactions are studied in this work using molecular dynamics simulation method. The torsional properties of carbon nanotubes(CNTs) in a hydrodynamic environment such as water are critical for its key role in determining the lifetime and stability of CNT based nano-fluidic devices. The effect of chirality, defects and the density of water encapsulation is studied by subjecting the SWCNT to torsion. The findings show that the torsional strength of SWCNT decreases due to interaction of water molecules and presence of defects in the SWCNT. Additionally,for the case of water molecules encapsulated inside SWCNT, the torsional response depends on the density of packing of water molecules. Our findings and conclusions obtained from this paper is expected to further compliment the potential applications of CNTs as promising candidates for applications in nano-biological and nano-fluidic devices.
基金the National Natural Science Foundation of China(52104155)Natural Science Foundation of Beijing(8212032)Fundamental Research Funds for the Central Universities(2023YQNY).
文摘Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale.
基金Supported by the Portuguese Foundation for Science and Technology under Grant No.PTDC/ECM/100686/2008
文摘A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement.
基金Supported by the National Natural Science Foundation of China (No.20436040).
文摘Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararneters in this article. Based on these extending methods, the effect of varying freshwater consumption and regenerated water flow rate on the optimizing results are investigated. The interactions of parameters of regeneration recycling systems are summarized. Finally, all the conclusions are illustrated from the results of mathematical programming through an example.
文摘Gneiss\|distilled water interaction at room temperature was investigated with batch\|reactors to study water\|rock reaction and geochemical evolution of the aqueous phase with time. The ion concentrations in water were controlled not only by the dissolution of primary minerals, but also by the precipitation of secondary minerals. The decreasing fraction sizes of gneiss could favor dissolution and precipitation simultaneously. Ca\+\{2+\} and K\++ were the major cations, and HCO\+-\-3 was the major anion in water. All the ions except Ca\+\{2+\} increased in concentration with time. The Ca\+\{2+\} release from the rock to the aqueous phase was initially much faster than the release of K\++, Na\++ and Mg\+\{2+\}. But after about 5-24 hours, the Ca\+\{2+\} concentrations in water decreased very slowly with time and became relatively stable. During the experiment, the water varied from the Ca\|(K)\|HCO\-3\|type water to the K\|Ca\|HCO\-3\|type water, and then to the K\|(Ca,Na)\|HCO\-3\|type water. The water\|gneiss interaction was dominated by the dissolution of K\|feldspar in the solution. The remaining secondary minerals were mainly kaolinite, illite and K(Mg)\|mica.
基金Project supported by the National Natural Science Foundation of China (No. 50278088)the Program for New Century Excellent Talents in University (No. NCET-04-0525), China
文摘Water distribution networks are essential components of water supply systems. The combination of pipe structural deterioration and mechanics leads to the failure of pipelines. A physical model for estimating the pipe failure must include both the pipe deterioration model and mechanics model. Winkler pipe-soil interaction (WPSI), an analytical mechanics model developed by Rajani and Tesfamariam (2004), takes external and internal loads, temperature changes, loss of bedding support, and the elastoplastic effect of soil into consideration. Based on the WPSI model, a method to evaluate the elastic and plastic areas was proposed in the present study. An FEM model based on pipe-soil interaction (PSI) element was used to verify the analytical model. Sensitivity analyses indicate that the soft soil, long pipe and high temperature induced the axial plastic deformation more likely, which, however, may not occur in normal scenarios. The soft soil, pipes in small diameters, long unsupported bedding are prone to form flexural plastic area. The results show that the pipes subjected to the same loads have smaller stresses in the elastoplastic analysis than elastic analysis. The difference, however, is slight.
文摘The interactions on gold active and migratory quantities and rates between tuffaceous slate and solu tions with different compositions were experimentally studied at 200 ℃, 20 MPa, in a high pressure apparatus. After reaction, tuffaceous slate became light colored and soft, and its mass density reduced. The amount of gold extracted from tuffaceous slate ranges widely, from 0 027 to 0 234 μg/g. Chlorine solution may activate appreciable amount of gold, and the gold migratory rate is high enough, from 50 70% to 92 30%, which reveals that sulphur and chlorine work together in solutions to accelerate gold activation and migration, and to realize gold mineralization in favorable places.
基金part of the UNESCO-Chair on Sustainable Groundwater Management in Mongoliafinancially supported by UNESCO/Japan Funds-in-Trust Co-operation for the Promotion of International Cooperation and Mutual Understanding.
文摘Drinking water supplies in Ulaanbaatar, the capital of Mongolia, are completely dependent on groundwater sourced from pumping wells located in an alluvial plain of the Tuul River which flows through Ulaanbaatar. The interaction between groundwater in the alluvial plain and river surface water was investigated using a hydrological and multi-tracers approach. The observed groundwater contour map clearly shows that the Tuul River recharges the floodplain groundwater and groundwater flows from east to west. The similarity of chemical and stable isotopic compositions suggests that groundwater is mainly recharged by Tuul River water in the vicinity of the river. In addition, considering groundwater contours and chemical composition, groundwater in the northern and southern mountain sides contribute to floodplain groundwater. Stable isotopic information suggests that winter season precipita- tion also contributes to the groundwater, because groundwater in a specific region has a considerably lower isotopic ratio. Using the End Member Mixing Analysis applying oxygen-18, SiO2 and HCO3 as tracers, the contribution ratios of the Tuul River, groundwater in the northem and southern mountain regions, and winter season precipitation to floodplain groundwater are esti- mated to be 58% to 85%, 1% to 54%, 0% to 16%, and 0% to 12%, respectively.
文摘In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.
基金supported by the National Key Research and Development Program of China (2016YFFA0200400)the Natural Science Foundation of China (51571100, 51872116, and 51602305)+3 种基金the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Fundamental Research Funds for the Central Universitiessupport from the Australian Research Council (ARC, FT150100450 and IH150100006)the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET, CE170100039)
文摘Two-dimensional materials(2DMs) have attracted substantial attention due to their abundant active sites and their ultrahigh surface area for different catalytic applications due to the high lateral-longitudinal ratio. Transition metal dichalcogenides(TMDs), especially MoS2, as one of the 2DMs most often studied, have shown superior activity in electrochemical applications. Recently, combinations of different 2DMs have been widely studied, and they appear to be the most promising strategy available to develop state of the art catalysts for different reactions.In this article, we review the interactions between MoS2 and other materials as well as the novel assembly induced phase transitions of TMDs and their underlying mechanisms. Several methods for inducing the phase transition of TMDs by building MoS2-based heterostructures have been introduced. The electronic coupling between these counterparts has significantly enhanced their conductivity and optimized the energy states of the materials, thus introducing enhanced activity as compared to their original counterparts. The ideas summarized in this article may shed new light on and help to develop next-generation green energy materials by designing and constructing highly active two-dimensional catalysts for efficient water splitting.
基金This work was financially supported by the Key Technologies R&D Program of Tianjin(No.06YFGZGX02400).
文摘Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling was analyzed by scanning electron microscopy(SEM)and energy dispersive X-ray detector(EDX).The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction.Some calcium ions of calcium carbonate crystal are replaced by zinc ions,the growth of aragonite crystal nucleus is retarded,and the transition of calcium carbonate from aragonite to calcite is hampered.
基金This study is financially supported by the China Ministry of Education Key Research Project“KSHIP-II Project”(Grant No.GKZY010004).
文摘This paper presents a systematic model test program to assess the uncertainty of the ship-bank interaction forces,using the planar motion mechanism(PMM)system in a circulating water channel(CWC).Therefore,the uncertainties due to ship-bank distance and water depth are considered,and they are calculated via the partial differentials of the regression formulae based on the test data.The general part of the uncertainty analysis(UA)is performed according to the ITTC recommended procedure 7.5-02-06.04,while the uncertainty of speed is identified as the bias limit due to the flow velocity maldistribution in the CWC.In each example test for the UA of ship-bank interaction forces,12 repeated measurements were conducted.Results from the UA show that the contribution of water depth error and flow velocity maldistribution to the total uncertainty is noticeable,and the paper explains how they increase with the change of the test conditions.The present study will be useful in understanding the uncertainty regarding the ship-bank interaction force measurement in a CWC.
基金supported by the National Key R&D Program of China(Grant No.2019YFB1600702)the Scientific Research Project of Yangtze-to-Huaihe Water Diversion Project(Grant No.YJJH-YJJC-ZX-20191106220)+1 种基金the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Grant Nos.Y220002 and Y220013)the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2019009).
文摘Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for wave−permeable breakwater−porous seabed interactions is built based on an improved N−S equation.A numerical wave flume is constructed,and numerical studies are carried out by applying the finite difference method.In combination with a physical model test,the accuracy of the numerical simulation results is verified by comparing the calculated and measured values of wave height at measurement points and the seepage pressure within the breakwater and seabed.On this basis,the characteristics of the surrounding wave field and the internal flow field of the pore structure,as well as the evolution process of the fluctuating pore water pressure inside the breakwater and seabed,are further analyzed.The spatial distribution of the maximum fluctuating pore water pressure in the breakwater is compared between two cases by considering whether the seabed is permeable,and then the effect of seabed permeability on the dynamic pore water pressure in the breakwater is clarified.This study attempts to provide a reference for breakwater design and the protection of nearby seabeds.