期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of Evaluation of Different Irrigation Methods with Sensor System on Water Consumptive Use and Water Use Efficiency for Maize Yield
1
作者 Thamer Thamer Nadine Nassif +1 位作者 Ayad Almaeini Nadhir Al-Ansari 《Journal of Water Resource and Protection》 2021年第11期835-854,共20页
The sensor system is one of the modern and important methods of irrigation management in arid and semi-arid areas, which is water as the limiting factor for crop production. The study was applied for 2016 and 2017 sea... The sensor system is one of the modern and important methods of irrigation management in arid and semi-arid areas, which is water as the limiting factor for crop production. The study was applied for 2016 and 2017 seasons out in Al-Yousifya, 15 km Southwest of Baghdad. A study was conducted to evaluate coefficient uniformity, uniformity distribution and application efficiency for furrow, surface drip and subsurface drip irrigation methods and it was (98, 97 and 89)% and (97, 96 and 88)% for 2016 and 2017 seasons;respectively. And control the volumetric moisture content according to the rhizosphere depth for depths of 10, 20 and 30 cm by means of the sensor system. The results indicated that the height consumptive water use of furrow 707.91 and 689.69 mm<span style="white-space:nowrap;">&middot;</span>season<sup>-1</sup> and the lowest for subsurface drip with emitter deep at 20 cm 313.93 and 293.50 mm<span style="white-space:nowrap;">&middot;</span>season<sup>-1</sup> for 2016 and 2017 seasons;respectively. As well, the highest value of water use efficiency for subsurface in drip irrigation at a depth of 20 cm, was 2.71 and 2.99 kg<span style="white-space:nowrap;">&middot;</span>m<sup>-3</sup> and the lowest value for furrow irrigation was 1.12 and 1.20 kg<span style="white-space:nowrap;">&middot;</span>m<sup>-3</sup> for the 2016 and 2017 seasons;respectively. 展开更多
关键词 Irrigation Methods Application Efficiency water consumptive use water use Efficiency MAIZE
下载PDF
Effects of Tillage Practices on Water Consumption, Water Use Efficiency and Grain Yield in Wheat Field 被引量:8
2
作者 ZHENG Cheng-yan YU Zhen-wen +4 位作者 SHI Yu CUI Shi-ming WANG Dong ZHANG Yong-li ZHAO Jun-ye 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2378-2388,共11页
Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of til... Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of tillage practices on the water consumption and water use efifciency (WUE) of wheat under high-yield conditions using supplemental irrigation based on testing soil moisture dynamic change were examined in this study. This experiment was conducted from 2007 to 2010, with ifve tillage practice treatments, namely, strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS), and plowing tillage (P). The results showed that in the SRS and RS treatments the total water and soil water consumptions were 11.81, 25.18%and 12.16, 14.75%higher than those in SR and R treatments, respectively. The lowest ratio of irrigation consumption to total water consumption in the SRS treatment was 18.53 and 21.88%for the 2008-2009 and 2009-2010 growing seasons, respectively. However, the highest percentage of water consumption was found in the SRS treatment from anthesis to maturity. No signiifcant difference was found between the WUE of the lfag leaf at the later iflling stage in the SRS and RS treatments, but the lfag leaf WUE at these stages were higher than those of other treatments. The SRS and RS treatments exhibited the highest grain yield (9 573.76 and 9 507.49 kg ha-1 for 3-yr average) with no signiifcant difference between the two treatments, followed by P, R and SR treatments. But the SRS treatment had the highest WUE. Thus, the 1-yr subsoiling tillage, plus 2 yr of strip rotary planting operation may be an efifcient measure to increase wheat yield and WUE. 展开更多
关键词 winter wheat tillage practice water consumption characteristics yield water use efifciency supplemental irrigation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部