The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh wat...From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban flesh water consumption increased 561.7× 10^9m^3, and the proportion to the total national flesh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi- rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.展开更多
Beijing has been experiencing a severe shortage of water. At present serious wastes of water resources result from the unreasonable structure of water uses in various industries sectors. The current conditions of t...Beijing has been experiencing a severe shortage of water. At present serious wastes of water resources result from the unreasonable structure of water uses in various industries sectors. The current conditions of the municipal water use structure and its changes in the industrial sectors were analysed and discussed in terms of the indicators, such as direct water use coefficient, complete water use coefficient, water use multiplier and water reuse rate, by taking a year of 1990s as the base year. Some response strategies for water conservation have been studied and the corresponding recommendations were put forward. All of these have provided a basis for coordinating the relationship between aquatic environment and economic growth in this city, establishing a system for rational utilization of water resources, and promoting the implementation of a strategy for sustainable development.展开更多
The development of urbanization has a close relationship with fresh water resources, especially in the rapid urbanization period. By analyzing the course of the urhanization development and the experience of internati...The development of urbanization has a close relationship with fresh water resources, especially in the rapid urbanization period. By analyzing the course of the urhanization development and the experience of international urbanization development, the paper confirms the starting time of the rapid urbanization. Based on the ecotogical theory; urban fresh water consumption is composed of three types: the direct, the indirect and the induced water consumption. And the paper constructs calculation model of the indirect and the induced water consumption. Using the related statistics data, the paper makes an empirical research on the changes of the amount and structure of water consumption. Then it discusses the correlation between the water consumption and the amount of urban population, and the result shows that the amount of the water consumption arid the urban population have a remarkable correlation with the exception of the amount of the indirect water consumption, and the curves fake on quadratic functian form. Last, from the urban fimction point of view; the paper anatomizes the cause of the urban water consumption changes.展开更多
The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu- merical modeling. An approximate analytical solution of horizontal-longitudinal correlation coefficie...The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu- merical modeling. An approximate analytical solution of horizontal-longitudinal correlation coefficient is derived based on the ray method. Combining the characteristic of Lloyd's mirror interference pattern, the variability of acoustic field and its effect on horizontal-longitudinal spatial correlation are discussed. The theoretical pre- diction agrees well with the numerical results. Experimental results confirm the validity of analytical solution. Finally, the applicability of the analytical solution is summarized. The conclusion is beneficial for the design of bottom-moored array and the estimation of integral time for moving source localization.展开更多
An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water lea...An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70 wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.展开更多
The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities...The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix.展开更多
The directionality of the sound generated by lase r-induced liquid breakdown in water is investigated both theoretically and experimentally. The theoretical analysis is based on the following model. A series of small ...The directionality of the sound generated by lase r-induced liquid breakdown in water is investigated both theoretically and experimentally. The theoretical analysis is based on the following model. A series of small spherical cavities including plasma are homogeneously distributed on a short straight line segment and every such cavity may be considered as a point source radiating acoustic impulse. Theoretical expressions of the relations between the amplitude and width of acoustic impulse and the receiving direction are given. Experimental results are in agreement with theoretical predictions.展开更多
Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible fo...Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types. This paper concentrates on the vulnerability of such water types to the introduction of exotic species. This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves. We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated). Numerical values used in the formula have been found by scoring a number of properties in different water types and species, which are specified in questionnaires. The results of the calculations are given as relative vulnerability scores (scale 1-10). By testing as many as 8 water types and 13 species, we demonstrate that this method is flexible and easy to use for water managers. Our results can be translated into classes of vulner- ability, which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies. This readily corresponds to the way countries are required to report to the European Union in the context of the WFD. The method can also be generalized using functional groups of (exotic) species instead of particular species展开更多
From 2009 until 2012 the project“Watershed Management of Forest Land in Beijing,Restoration of Small Water Bodies(SWBR)”was implemented,combining Close to Nature Forest Management and Restoration of Small Water Bodi...From 2009 until 2012 the project“Watershed Management of Forest Land in Beijing,Restoration of Small Water Bodies(SWBR)”was implemented,combining Close to Nature Forest Management and Restoration of Small Water Bodies.The targets were to improve flood control,to enhance the ecological conditions by copying nature and to support the recreational value of small water bodies,all in cooperation with people living there.The efficiency of each project was proofed by comparison of biological and hydro-morphological assessment before the projects started and 2-3 years after they were finished.The results confirmed the ecological improvements of the restored river sections and showed the achievements.Guidelines to assess the biological and hydro-morphological status of rivers were developed and there are plans to introduce them as Beijing Standards.Planning and implementation of measures,based on experiences in Central Europe,will be documented in a handbook.&2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press.Production and Hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
This study focused on the effects of vessel and water temperatures on direct injection in internal combustion Rankine cycle engines through experimental and numerical methods.First,a study was carried out with schlier...This study focused on the effects of vessel and water temperatures on direct injection in internal combustion Rankine cycle engines through experimental and numerical methods.First,a study was carried out with schlieren photography using a high-speed camera for simultaneous liquid–gas diagnoses.Water was directly injected into a constant-volume vessel that provided stable boundaries.We wrote a MATLAB program to calculate spray tip penetration and cone angle from the images.For the further extension of boundary conditions,a numerical model was established and calibrated in AVL-FIRE for the thorough analysis of injection characteristics.Both experimental and numerical results indicated that injection and vessel temperatures have different effects on spray tip penetration.An increase in injected water temperature leads to shorter spray tip penetration,while the spray tip penetration increases with increasing vessel temperature.However,increased injection and vessel temperatures can both decrease the spray cone angle.Moreover,the simulation results also suggested that heat conduction is a main factor in boosting evaporation under top dead center conditions.When the internal energy of water parcels surges,these parcels evaporate immediately.These results are helpful and crucial for internal combustion engines equipped with direct water injection technology.展开更多
We used the interdisciplinary model network REGFLUD to predict the actual mean nitrate concentration in percolation water at the scale of the Weser river basin (Germany) using an area differentiated (100 m × 1...We used the interdisciplinary model network REGFLUD to predict the actual mean nitrate concentration in percolation water at the scale of the Weser river basin (Germany) using an area differentiated (100 m × 100 m) approach. REGFLUD combines the agro-economic model RAUMIS for estimating nitrogen surpluses and the hydrological models GROWA/DENUZ for assessing the nitrate leaching from the soil. For areas showing predicted nitrate concentrations in percolation water above the European Union (EU) groundwater quality standard of 50 mg NO3-N/L, effective agri-environmental reduction measures need to be derived and implemented to improve groundwater and surface water quality by 2015. The effects of already implemented agricultural policy are quantified by a baseline scenario projecting the N-surpluses from agricultural sector to 2015. The REGFLUD model is used to estimate the effects of this scenario concerning groundwater and surface water pollution by nitrate. From the results of the model analysis the needs for additional measures can be derived in terms of required additional N-surplus reduction and in terms of regional prioritization of measures. Research work will therefore directly support the implementation of the Water Framework Directive of the European Union in the Weser basin.展开更多
The occurrence of per-and polyfluoroalkyl substances(PFAS)in water cycles poses a challenge to drinking water quality and safety.In order to counteract the large knowledge gap regarding PFAS in German drinking water,8...The occurrence of per-and polyfluoroalkyl substances(PFAS)in water cycles poses a challenge to drinking water quality and safety.In order to counteract the large knowledge gap regarding PFAS in German drinking water,89 drinking water samples from all over Germany were collected with the help of residents and were analyzed for 26 PFAS by high-performance liquid chromatography with tandem mass spectrometry(HPLC-MS/MS).The 20 PFAS recently regulated by sum concentration(PFAS_(∑20)),as well as six other PFAS,were quantified by targeted analysis.In all drinking water samples,PFAS_(∑20 )was below the limit of 0.1μg/L,but the sum concentrations ranged widely from below the limit of quantification up to 80.2 ng/L.The sum concentrations(PFASP4)of perfluorohexanesulfonate(PFHxS),perfluorooctanesulfonate(PFOS),perfluorooctanoate(PFOA),and perfluorononanoate of 20 ng/L were exceeded in two samples.The most frequently detected individual substances were PFOS(in 52%of the samples),perfluorobutanesulfonate(52%),perfluorohexanoate(PFHxA)(44%),perfluoropentanoate(43%)and PFHxS(35%).The highest single concentrations were 23.5 ng/L for PFHxS,15.3 ng/L for PFOS,and 10.1 ng/L for PFHxA.No regionally elevated concentrations were identified,but some highly urbanized areas showed elevated levels.Concentrations of substitution PFAS,including 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate and 2,2,3-trifluor-3-[1,1,2,2,3,3-hexafluor-3-(trifluormethoxy)propoxy]-propanoate(anion of ADONA),were very low compared to regulated PFAS.The most frequently detected PFAS were examined for co-occurrences,but no definite correlations could be found.展开更多
A method based on micellar liquid chromatography has been developed to simultaneously monitor four pesticides largely post-harvest applied to citrus:thiabendazole,pyrimethanil,o-phenylphenol and imazalil.Water sample...A method based on micellar liquid chromatography has been developed to simultaneously monitor four pesticides largely post-harvest applied to citrus:thiabendazole,pyrimethanil,o-phenylphenol and imazalil.Water samples were filtered and directly injected without other treatment,thus avoiding extraction steps.The composition of the mobile phase was optimized using a chemometrical approach to achieve and excellent resolution to 0.07 mol/L SDS/5%,V/V 1-pentanol buffered at p H 3.Mobile phase run through a C18 column at 1 m L/min at room temperature.The detection was performing by UV–Visible absorbance using a wavelength program:0–10 min,305 nm(for thiabendazole);10–12;265 nm(for pyrimethanil)and 12–18,220 nm(o-phenylphenol and imazalil).The developed method was validated following the guidelines of the US Environmental Protection Agency in terms of:quantitation range,(0.5–4 to 15μg/m L),linearity(r2〉0.9995),sensitivity(LOD,0.18–1.4μg/m L),precision(〈9.2%),trueness(93.9%–103.7%),and ruggedness(〈9.9%).It was found that the fungicides remain up to eight days in surface water at outdoor conditions.The method was used to screen the presence of the analytes in several waste water samples,and was proved to be useful in routine analysis.展开更多
Spider-capture-silk(SCS)can directionally capture and transport water from humid air relying on the unique geometrical structure.Although there have been adequate reports on the fabrication of artificial SCSs from pet...Spider-capture-silk(SCS)can directionally capture and transport water from humid air relying on the unique geometrical structure.Although there have been adequate reports on the fabrication of artificial SCSs from petroleum-based materials,it remains a big challenge to innovate bio-based SCS mimicking fibers with high-performance fog collection ability and efficiency simultaneously.Herein,we report an eco-friendly and economical fiber system for water collection by coating gelatin on degummed silk.Compared to the previously reported fibers with the best fog collection ability(~13.10μL),Gelatin on silk fiber 10(GSF10)can collect larger water droplet(~16.70μL in 330 s)with~98%less mass.Meanwhile,the water collection efficiency of GSF10 demonstrates~72%and~48%enhancement to the existing best water collection polymer coated SCS fibers and spidroin eMaSp2 coated degummed silk respectively in terms of volume-to-TCL(vapor-liquid-solid three-phase contact line)index.The simultaneous function of superhydro-philicity,surface energy gradient,and~65%water-induced volume swelling of the gelatin knots are the key factors in advancing the water collection performance.Abundant availability of feedstocks and~75%improved space utiliza-tion guarantee the scalability and practical application of such bio-based fiber.展开更多
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40535026)
文摘From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban flesh water consumption increased 561.7× 10^9m^3, and the proportion to the total national flesh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi- rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.
文摘Beijing has been experiencing a severe shortage of water. At present serious wastes of water resources result from the unreasonable structure of water uses in various industries sectors. The current conditions of the municipal water use structure and its changes in the industrial sectors were analysed and discussed in terms of the indicators, such as direct water use coefficient, complete water use coefficient, water use multiplier and water reuse rate, by taking a year of 1990s as the base year. Some response strategies for water conservation have been studied and the corresponding recommendations were put forward. All of these have provided a basis for coordinating the relationship between aquatic environment and economic growth in this city, establishing a system for rational utilization of water resources, and promoting the implementation of a strategy for sustainable development.
基金supported by the Key Project of National Natural Science Foundation of China (Grant No.40535026)
文摘The development of urbanization has a close relationship with fresh water resources, especially in the rapid urbanization period. By analyzing the course of the urhanization development and the experience of international urbanization development, the paper confirms the starting time of the rapid urbanization. Based on the ecotogical theory; urban fresh water consumption is composed of three types: the direct, the indirect and the induced water consumption. And the paper constructs calculation model of the indirect and the induced water consumption. Using the related statistics data, the paper makes an empirical research on the changes of the amount and structure of water consumption. Then it discusses the correlation between the water consumption and the amount of urban population, and the result shows that the amount of the water consumption arid the urban population have a remarkable correlation with the exception of the amount of the indirect water consumption, and the curves fake on quadratic functian form. Last, from the urban fimction point of view; the paper anatomizes the cause of the urban water consumption changes.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu- merical modeling. An approximate analytical solution of horizontal-longitudinal correlation coefficient is derived based on the ray method. Combining the characteristic of Lloyd's mirror interference pattern, the variability of acoustic field and its effect on horizontal-longitudinal spatial correlation are discussed. The theoretical pre- diction agrees well with the numerical results. Experimental results confirm the validity of analytical solution. Finally, the applicability of the analytical solution is summarized. The conclusion is beneficial for the design of bottom-moored array and the estimation of integral time for moving source localization.
基金financially supported by the National Basic Research Program of China(Nos.2013CB632601 and 2013CB632604)the National Science Foundation for Distinguished Young Scholars of China(Nos.51125018 and 51504230)+3 种基金the Key Research Program of the Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(Nos.51374191,21106167,2160624,and 51104139)the Financial Grant from the China Postdoctoral Science Foundation(Nos.2012M510552 and 2013T60175)the Nonprofit Industry Research Subject of Environmental Projection(No.201509053)
文摘An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70 wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.41072211,41322019)Natural Science Foundation of Jiangsu Province(Grant No.BK2011339)Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(SKLGP2013K010)
文摘The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix.
基金The project is supported by National Natural Science Foundation of China.
文摘The directionality of the sound generated by lase r-induced liquid breakdown in water is investigated both theoretically and experimentally. The theoretical analysis is based on the following model. A series of small spherical cavities including plasma are homogeneously distributed on a short straight line segment and every such cavity may be considered as a point source radiating acoustic impulse. Theoretical expressions of the relations between the amplitude and width of acoustic impulse and the receiving direction are given. Experimental results are in agreement with theoretical predictions.
文摘Invasive exotic (alien) species have not been taken into enough consideration concerning the European Water Framework Directive (WFD) and other European directives until recently. The Dutch ministry responsible for water management is looking for ways to establish the impacts that invasive alien species may have on specified water types. This paper concentrates on the vulnerability of such water types to the introduction of exotic species. This new approach focusses on the system where the alien species are introduced into rather than only on the alien species themselves. We propose an equation that combines threats to and in water types with effects of particular species (observed or prognosticated). Numerical values used in the formula have been found by scoring a number of properties in different water types and species, which are specified in questionnaires. The results of the calculations are given as relative vulnerability scores (scale 1-10). By testing as many as 8 water types and 13 species, we demonstrate that this method is flexible and easy to use for water managers. Our results can be translated into classes of vulner- ability, which are represented on geographical maps with colour codes to indicate different degrees of vulnerability in the different water bodies. This readily corresponds to the way countries are required to report to the European Union in the context of the WFD. The method can also be generalized using functional groups of (exotic) species instead of particular species
文摘From 2009 until 2012 the project“Watershed Management of Forest Land in Beijing,Restoration of Small Water Bodies(SWBR)”was implemented,combining Close to Nature Forest Management and Restoration of Small Water Bodies.The targets were to improve flood control,to enhance the ecological conditions by copying nature and to support the recreational value of small water bodies,all in cooperation with people living there.The efficiency of each project was proofed by comparison of biological and hydro-morphological assessment before the projects started and 2-3 years after they were finished.The results confirmed the ecological improvements of the restored river sections and showed the achievements.Guidelines to assess the biological and hydro-morphological status of rivers were developed and there are plans to introduce them as Beijing Standards.Planning and implementation of measures,based on experiences in Central Europe,will be documented in a handbook.&2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press.Production and Hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
基金National Natural Science Foundation of China(Nos.91441125 and 51076118).
文摘This study focused on the effects of vessel and water temperatures on direct injection in internal combustion Rankine cycle engines through experimental and numerical methods.First,a study was carried out with schlieren photography using a high-speed camera for simultaneous liquid–gas diagnoses.Water was directly injected into a constant-volume vessel that provided stable boundaries.We wrote a MATLAB program to calculate spray tip penetration and cone angle from the images.For the further extension of boundary conditions,a numerical model was established and calibrated in AVL-FIRE for the thorough analysis of injection characteristics.Both experimental and numerical results indicated that injection and vessel temperatures have different effects on spray tip penetration.An increase in injected water temperature leads to shorter spray tip penetration,while the spray tip penetration increases with increasing vessel temperature.However,increased injection and vessel temperatures can both decrease the spray cone angle.Moreover,the simulation results also suggested that heat conduction is a main factor in boosting evaporation under top dead center conditions.When the internal energy of water parcels surges,these parcels evaporate immediately.These results are helpful and crucial for internal combustion engines equipped with direct water injection technology.
基金The research work presented in this article is carried out in the framework of the AGRUM Weser project which was funded on behalf of the German Federal Ministry of Food,Agriculture and Consumer protection (BMELV) and the River Basin Commission Weser (FGG).
文摘We used the interdisciplinary model network REGFLUD to predict the actual mean nitrate concentration in percolation water at the scale of the Weser river basin (Germany) using an area differentiated (100 m × 100 m) approach. REGFLUD combines the agro-economic model RAUMIS for estimating nitrogen surpluses and the hydrological models GROWA/DENUZ for assessing the nitrate leaching from the soil. For areas showing predicted nitrate concentrations in percolation water above the European Union (EU) groundwater quality standard of 50 mg NO3-N/L, effective agri-environmental reduction measures need to be derived and implemented to improve groundwater and surface water quality by 2015. The effects of already implemented agricultural policy are quantified by a baseline scenario projecting the N-surpluses from agricultural sector to 2015. The REGFLUD model is used to estimate the effects of this scenario concerning groundwater and surface water pollution by nitrate. From the results of the model analysis the needs for additional measures can be derived in terms of required additional N-surplus reduction and in terms of regional prioritization of measures. Research work will therefore directly support the implementation of the Water Framework Directive of the European Union in the Weser basin.
文摘The occurrence of per-and polyfluoroalkyl substances(PFAS)in water cycles poses a challenge to drinking water quality and safety.In order to counteract the large knowledge gap regarding PFAS in German drinking water,89 drinking water samples from all over Germany were collected with the help of residents and were analyzed for 26 PFAS by high-performance liquid chromatography with tandem mass spectrometry(HPLC-MS/MS).The 20 PFAS recently regulated by sum concentration(PFAS_(∑20)),as well as six other PFAS,were quantified by targeted analysis.In all drinking water samples,PFAS_(∑20 )was below the limit of 0.1μg/L,but the sum concentrations ranged widely from below the limit of quantification up to 80.2 ng/L.The sum concentrations(PFASP4)of perfluorohexanesulfonate(PFHxS),perfluorooctanesulfonate(PFOS),perfluorooctanoate(PFOA),and perfluorononanoate of 20 ng/L were exceeded in two samples.The most frequently detected individual substances were PFOS(in 52%of the samples),perfluorobutanesulfonate(52%),perfluorohexanoate(PFHxA)(44%),perfluoropentanoate(43%)and PFHxS(35%).The highest single concentrations were 23.5 ng/L for PFHxS,15.3 ng/L for PFOS,and 10.1 ng/L for PFHxA.No regionally elevated concentrations were identified,but some highly urbanized areas showed elevated levels.Concentrations of substitution PFAS,including 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate and 2,2,3-trifluor-3-[1,1,2,2,3,3-hexafluor-3-(trifluormethoxy)propoxy]-propanoate(anion of ADONA),were very low compared to regulated PFAS.The most frequently detected PFAS were examined for co-occurrences,but no definite correlations could be found.
基金supported by the projects P1-1B2012-36(Universitat Jaume I)11I358.01(FACSA)
文摘A method based on micellar liquid chromatography has been developed to simultaneously monitor four pesticides largely post-harvest applied to citrus:thiabendazole,pyrimethanil,o-phenylphenol and imazalil.Water samples were filtered and directly injected without other treatment,thus avoiding extraction steps.The composition of the mobile phase was optimized using a chemometrical approach to achieve and excellent resolution to 0.07 mol/L SDS/5%,V/V 1-pentanol buffered at p H 3.Mobile phase run through a C18 column at 1 m L/min at room temperature.The detection was performing by UV–Visible absorbance using a wavelength program:0–10 min,305 nm(for thiabendazole);10–12;265 nm(for pyrimethanil)and 12–18,220 nm(o-phenylphenol and imazalil).The developed method was validated following the guidelines of the US Environmental Protection Agency in terms of:quantitation range,(0.5–4 to 15μg/m L),linearity(r2〉0.9995),sensitivity(LOD,0.18–1.4μg/m L),precision(〈9.2%),trueness(93.9%–103.7%),and ruggedness(〈9.9%).It was found that the fungicides remain up to eight days in surface water at outdoor conditions.The method was used to screen the presence of the analytes in several waste water samples,and was proved to be useful in routine analysis.
基金The National Natural Science Foundation of China(Nos.52073186,52073241)State Key Laboratory of Polymer Materials Engineering(sklpme2021-3-01)+2 种基金Funding of Engineering Characteristic Team,Sichuan University(2020SCUNG122)Hong Kong General Research Fund(15201719)the Guangdong Basic and Applied Basic Research Foundation,Shenzhen Joint Fund,Youth Fund Project 2019(2019A1515111207).
文摘Spider-capture-silk(SCS)can directionally capture and transport water from humid air relying on the unique geometrical structure.Although there have been adequate reports on the fabrication of artificial SCSs from petroleum-based materials,it remains a big challenge to innovate bio-based SCS mimicking fibers with high-performance fog collection ability and efficiency simultaneously.Herein,we report an eco-friendly and economical fiber system for water collection by coating gelatin on degummed silk.Compared to the previously reported fibers with the best fog collection ability(~13.10μL),Gelatin on silk fiber 10(GSF10)can collect larger water droplet(~16.70μL in 330 s)with~98%less mass.Meanwhile,the water collection efficiency of GSF10 demonstrates~72%and~48%enhancement to the existing best water collection polymer coated SCS fibers and spidroin eMaSp2 coated degummed silk respectively in terms of volume-to-TCL(vapor-liquid-solid three-phase contact line)index.The simultaneous function of superhydro-philicity,surface energy gradient,and~65%water-induced volume swelling of the gelatin knots are the key factors in advancing the water collection performance.Abundant availability of feedstocks and~75%improved space utiliza-tion guarantee the scalability and practical application of such bio-based fiber.