The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional...The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.展开更多
Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting mod...Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting modes on permeate flux and removal rate of chemical oxygen demand (COD_ Cr) were studied. The results show that the permeate flux of ultrafiltration membrane is influenced by pressure and temperature; practical pressure is chosen to be 0.30.7MPa for the PEG with molecular mass cut-offs of 8000 and 0.71.0 MPa for the PEG with molecular mass cut-offs of 2500; and the practical temperature is chosen to be 2532℃. Different operating modes of ultrafiltration also influence the permeate flux and removal rate of COD_ Cr. The ultrafiltration membrane of intermittent cross-flow operating mode is easier to be influenced by blocky polarization and contamination than that of sequential cross-flow operating mode. Removal rate of COD_ Cr in intermittent cross-flow and sequential cross-flow condition can be maintained at about 93%.展开更多
A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space b...A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.展开更多
The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous proble...The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.展开更多
We report the use of CaTiO_(3):Pr^(3+)multiband persistent luminescent nanoparticles,which can simultaneously emit red(610 nm),near-infrared(893 nm),and short-wave infrared(1040 nm)photoluminescence and persistent lum...We report the use of CaTiO_(3):Pr^(3+)multiband persistent luminescent nanoparticles,which can simultaneously emit red(610 nm),near-infrared(893 nm),and short-wave infrared(1040 nm)photoluminescence and persistent luminescence,as the tracer nanoagents for water tracer sensing.By using a spectrofluorometer,an Si charge-coupled device(CCD)camera and an InGaAs array camera as the detection tools,we evaluated the sensing capabilities of the three emission bands of CaTiO_(3):Pr^(3+)nanoparticles in brine water solutions and crude oil/brine water emulsions in both photoluminescence mode and persistent luminescence mode.Among these different detection combinations,the persistent luminescence-based Si CCD camera imaging exhibits the best sensing performance with the detection limits being at a single-digit ppb level for the 610 and 893 nm bands and about 100–200 ppb for the 1040 nm band in both water solutions and crude oil/water emulsions,while the photoluminescencebased Si CCD camera imaging has a much higher detection limit of~10 ppm in water solutions and of~200 ppm in oil/water emulsions.The persistent luminescence-based InGaAs array camera imaging to the 1040 nm band has the worst performance with the detection limits higher than 200 ppm for both solutions.The sensing performances of the spectrofluorometer to photoluminescence signals and persistent luminescence signals in the two solutions are about the same,with the detection limits being around 100–200 ppm.展开更多
The formation of water in crude oil emulsions occurs when crude oils are spilled into sea. The water in crude oil emulsions significantly change the properties of the spilled crude oils and in turn influence the c...The formation of water in crude oil emulsions occurs when crude oils are spilled into sea. The water in crude oil emulsions significantly change the properties of the spilled crude oils and in turn influence the choices made relating to oil spill countermeasures. The water in crude oil emulsions were characterized using various techniques in this study. The environmental scanning electron microscopy observation of water droplets in the emulsions is also presented. It is a powerful tool in emulsion observations.展开更多
Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Cer...Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Ceramic membranes have been used to deal with O/W emulsions,for its outstanding characteristics of easy-operation,high-flux,and long-term stability.However,membrane fouling is still a challenge in the industrial application of ceramic membranes.Herein,antifouling ceramic membranes were fabricated by grafting zwitterions on the membrane surface via an environment-friendly two-step grafting method,which improves the antifouling property and permeability.Successful grafting of such zwitterion on the ceramic surface was assessed by the combination of FTIR and XPS characterization.More importantly,the hydration can be formed by electrostatic interactions layer on the modified membrane,which was confirmed by TGA characterization.The antifouling performance of prepared zwitterionic ceramic membranes in the separation of O/W emulsions was systematically tested.The results suggested that zwitterion can significantly improve the flux of ceramic ultrafiltration membrane,and can also improve antifouling property dramatically by reducing the irreversible fouling in the separation of O/W emulsions.Therefore,zwitterionic ceramic membranes hold promising potentials as an antifouling,highly efficient and green method in the practical purification of the O/W emulsions.展开更多
With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant...With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant and salt,the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing diffi-culty.Herein,a novel flow-through electrode-based demulsification reactor(FEDR)was well designed for the treatment of saline O/W emulsion.In contrast to 53.7%for electrical demul-sification only and 80.3%for filtration only,the COD removal efficiency increased to 92.8%under FEDR system.Moreover,the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance.By observing the mor-phology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions,the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through elec-trode by sieving effect,subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode,leading to a high-performing demulsification.This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.展开更多
The nitrogen oxide(NOx)release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification.In the present paper,different formulations of water in diesel emulsion fuels were pr...The nitrogen oxide(NOx)release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification.In the present paper,different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation.The water droplet size in the emulsion,polydisperisty index,and the stability of prepared fuel was examined,experimentally.Afterwards,the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels.The effect of water content(in the range of 5%-10% by volume),surfactant content(in the range of 0.5%-2% by volume),and hydrophilic-lipophilic balance(HLB)(in the range of 5-8)was examined using Box-Behnken design(BBD)as a subset of response surface methodology(RSM).Considering multi-objective optimization,the best formulation for the emulsion fuel was found to be 5%water,2% surfactant,and HLB of 6.8.A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics.A considerable decrease in the nitrogen oxide emission(-18.24%)was observed for the best emulsion fuel compared to neat diesel fuel.展开更多
Due to the widespread use of nanocarbon materials(NCMs),more researchers are studying their tribological performances.In this work,the tribological behaviors of the following five types of NCMs with different geometri...Due to the widespread use of nanocarbon materials(NCMs),more researchers are studying their tribological performances.In this work,the tribological behaviors of the following five types of NCMs with different geometric shapes were evaluated in a novel oil‐in‐water system:spherical fullerenes(C60,0D),tubular multi‐walled carbon nanotubes(MWCNT,1D),sheet graphene oxide(GO,2D),sheet graphene oxide derivative(Oct‐O‐GO,2D),and lamellar graphite(G,3D).Among these,GO with two types of oxidation degrees,i.e.,GO(1),GO(2),and Oct‐O‐GO(1)were synthesized and characterized using Fourier‐transform infrared spectroscopy,Raman spectroscopy,x‐ray diffraction,thermogravimetric analysis,scanning electron microscopy,and contact angle measurements.The load‐carrying capacity of the NCM emulsions were evaluated using a four‐ball test machine,and the lubrication performances were investigated using a high‐frequency reciprocating friction and wear tester with a sliding distance of 1,800 mm under different loads(50 N and 100 N)at 0.5 Hz.The results revealed that the Oct‐O‐GO(1)emulsion exhibited the best load‐carrying capacity,and the best friction‐reducing and anti‐wear properties compared to other emulsions.Moreover,the anti‐wear advantage was more prominent under high load conditions,whereas the other emulsions exhibited a certain degree of abrasive or adhesive wear.The lubrication mechanism was determined through the analysis of worn surfaces using scanning electron microscopy/energy‐dispersive x‐ray spectroscopy,micro‐Raman spectroscopy,and x‐ray photoelectron spectroscopy.The results revealed that during frictional sliding,the ingredients in the emulsion can absorb and react with the freshly exposed metal surface to form surface‐active films to protect the surfaces from abrasion.Moreover,it was found that the higher the amount of ingredients that contain alkyl and O‐H/C=O,the better was the lubrication performance in addition to an increase in the carbon residue in the tribofilm generated on the meal surface.展开更多
文摘The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.
文摘Polyethylene glycol(PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different opera- ting modes on permeate flux and removal rate of chemical oxygen demand (COD_ Cr) were studied. The results show that the permeate flux of ultrafiltration membrane is influenced by pressure and temperature; practical pressure is chosen to be 0.30.7MPa for the PEG with molecular mass cut-offs of 8000 and 0.71.0 MPa for the PEG with molecular mass cut-offs of 2500; and the practical temperature is chosen to be 2532℃. Different operating modes of ultrafiltration also influence the permeate flux and removal rate of COD_ Cr. The ultrafiltration membrane of intermittent cross-flow operating mode is easier to be influenced by blocky polarization and contamination than that of sequential cross-flow operating mode. Removal rate of COD_ Cr in intermittent cross-flow and sequential cross-flow condition can be maintained at about 93%.
基金Supported by the Eleventh Five-Year Plan of national support (2007BAI26B03-04)
文摘A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.
基金the financial support provided by the National Natural Science Foundation of China(Nos.22108125,21971113,and 22175094)Independent Innovation of Agricultural Science and Technology in Jiangsu Province(Nos.CX(21)3166,and CX(21)3163)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210627)Doctor Project of Mass Entrepreneurship and Innovation in Jiangsu Province(No.JSSCBS20210549)Nanjing Science&Technology Innovation Project for Personnel Studying Abroad and Research Start-up Funding of Nanjing Forestry University(No.163020259)Q.C.Z.appreciates the funding support from City University of Hong Kong and Hong Kong Institute for Advanced Study,City University of Hong Kong.
文摘The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.
基金supported by the College of Petroleum Engineering and Geosciences,King Fahd University of Petroleum and Minerals.
文摘We report the use of CaTiO_(3):Pr^(3+)multiband persistent luminescent nanoparticles,which can simultaneously emit red(610 nm),near-infrared(893 nm),and short-wave infrared(1040 nm)photoluminescence and persistent luminescence,as the tracer nanoagents for water tracer sensing.By using a spectrofluorometer,an Si charge-coupled device(CCD)camera and an InGaAs array camera as the detection tools,we evaluated the sensing capabilities of the three emission bands of CaTiO_(3):Pr^(3+)nanoparticles in brine water solutions and crude oil/brine water emulsions in both photoluminescence mode and persistent luminescence mode.Among these different detection combinations,the persistent luminescence-based Si CCD camera imaging exhibits the best sensing performance with the detection limits being at a single-digit ppb level for the 610 and 893 nm bands and about 100–200 ppb for the 1040 nm band in both water solutions and crude oil/water emulsions,while the photoluminescencebased Si CCD camera imaging has a much higher detection limit of~10 ppm in water solutions and of~200 ppm in oil/water emulsions.The persistent luminescence-based InGaAs array camera imaging to the 1040 nm band has the worst performance with the detection limits higher than 200 ppm for both solutions.The sensing performances of the spectrofluorometer to photoluminescence signals and persistent luminescence signals in the two solutions are about the same,with the detection limits being around 100–200 ppm.
文摘The formation of water in crude oil emulsions occurs when crude oils are spilled into sea. The water in crude oil emulsions significantly change the properties of the spilled crude oils and in turn influence the choices made relating to oil spill countermeasures. The water in crude oil emulsions were characterized using various techniques in this study. The environmental scanning electron microscopy observation of water droplets in the emulsions is also presented. It is a powerful tool in emulsion observations.
基金financially supported by the National Natural Science Foundation of China (21921006, 21706115)the National Key Research and Development Program of China (2017YFC0403702)+1 种基金the Project for Marine Science and Technology Innovation of Jiangsu Province (HY2018-10)Jiangsu Students’ Innovation and Entrepreneurship Training Program (201810291044Z)
文摘Enormous demands on the separation of oil/water(O/W)emulsions in various industries,such as petrochemical,food and pharmaceutical industries,are looking for high performance and energy-efficient separation methods.Ceramic membranes have been used to deal with O/W emulsions,for its outstanding characteristics of easy-operation,high-flux,and long-term stability.However,membrane fouling is still a challenge in the industrial application of ceramic membranes.Herein,antifouling ceramic membranes were fabricated by grafting zwitterions on the membrane surface via an environment-friendly two-step grafting method,which improves the antifouling property and permeability.Successful grafting of such zwitterion on the ceramic surface was assessed by the combination of FTIR and XPS characterization.More importantly,the hydration can be formed by electrostatic interactions layer on the modified membrane,which was confirmed by TGA characterization.The antifouling performance of prepared zwitterionic ceramic membranes in the separation of O/W emulsions was systematically tested.The results suggested that zwitterion can significantly improve the flux of ceramic ultrafiltration membrane,and can also improve antifouling property dramatically by reducing the irreversible fouling in the separation of O/W emulsions.Therefore,zwitterionic ceramic membranes hold promising potentials as an antifouling,highly efficient and green method in the practical purification of the O/W emulsions.
基金supported by the National Natural Science Foundation of China(Nos.22022606 and 52221004).
文摘With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant and salt,the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing diffi-culty.Herein,a novel flow-through electrode-based demulsification reactor(FEDR)was well designed for the treatment of saline O/W emulsion.In contrast to 53.7%for electrical demul-sification only and 80.3%for filtration only,the COD removal efficiency increased to 92.8%under FEDR system.Moreover,the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance.By observing the mor-phology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions,the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through elec-trode by sieving effect,subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode,leading to a high-performing demulsification.This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.
文摘The nitrogen oxide(NOx)release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification.In the present paper,different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation.The water droplet size in the emulsion,polydisperisty index,and the stability of prepared fuel was examined,experimentally.Afterwards,the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels.The effect of water content(in the range of 5%-10% by volume),surfactant content(in the range of 0.5%-2% by volume),and hydrophilic-lipophilic balance(HLB)(in the range of 5-8)was examined using Box-Behnken design(BBD)as a subset of response surface methodology(RSM).Considering multi-objective optimization,the best formulation for the emulsion fuel was found to be 5%water,2% surfactant,and HLB of 6.8.A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics.A considerable decrease in the nitrogen oxide emission(-18.24%)was observed for the best emulsion fuel compared to neat diesel fuel.
基金the National Natural Science Foundation of China(Nos.21703279,and21506064)Shanghai Natural Science Foundation(No.17ZR1442100)the Shanghai Municipal “Science and Technology Innovation Action Plan” International Cooperation Project(No.15540723600)for financial support
文摘Due to the widespread use of nanocarbon materials(NCMs),more researchers are studying their tribological performances.In this work,the tribological behaviors of the following five types of NCMs with different geometric shapes were evaluated in a novel oil‐in‐water system:spherical fullerenes(C60,0D),tubular multi‐walled carbon nanotubes(MWCNT,1D),sheet graphene oxide(GO,2D),sheet graphene oxide derivative(Oct‐O‐GO,2D),and lamellar graphite(G,3D).Among these,GO with two types of oxidation degrees,i.e.,GO(1),GO(2),and Oct‐O‐GO(1)were synthesized and characterized using Fourier‐transform infrared spectroscopy,Raman spectroscopy,x‐ray diffraction,thermogravimetric analysis,scanning electron microscopy,and contact angle measurements.The load‐carrying capacity of the NCM emulsions were evaluated using a four‐ball test machine,and the lubrication performances were investigated using a high‐frequency reciprocating friction and wear tester with a sliding distance of 1,800 mm under different loads(50 N and 100 N)at 0.5 Hz.The results revealed that the Oct‐O‐GO(1)emulsion exhibited the best load‐carrying capacity,and the best friction‐reducing and anti‐wear properties compared to other emulsions.Moreover,the anti‐wear advantage was more prominent under high load conditions,whereas the other emulsions exhibited a certain degree of abrasive or adhesive wear.The lubrication mechanism was determined through the analysis of worn surfaces using scanning electron microscopy/energy‐dispersive x‐ray spectroscopy,micro‐Raman spectroscopy,and x‐ray photoelectron spectroscopy.The results revealed that during frictional sliding,the ingredients in the emulsion can absorb and react with the freshly exposed metal surface to form surface‐active films to protect the surfaces from abrasion.Moreover,it was found that the higher the amount of ingredients that contain alkyl and O‐H/C=O,the better was the lubrication performance in addition to an increase in the carbon residue in the tribofilm generated on the meal surface.