In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle c...In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle consisting of a dual tube was studied, based on theoretical calculations and experiments. A thin inner tube was placed at the optimum position in the water injection nozzle. Such a simple design could make the water injection direction normal and the water velocity profile symmetrical along the nozzle. The water flow in the wet cleaning bath was observed using a blue-colored ink tracer. When the nozzle developed in this study was placed at the bottom of the bath, a fast and symmetrical upward water stream was formed between and around the wafers.展开更多
文摘In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle consisting of a dual tube was studied, based on theoretical calculations and experiments. A thin inner tube was placed at the optimum position in the water injection nozzle. Such a simple design could make the water injection direction normal and the water velocity profile symmetrical along the nozzle. The water flow in the wet cleaning bath was observed using a blue-colored ink tracer. When the nozzle developed in this study was placed at the bottom of the bath, a fast and symmetrical upward water stream was formed between and around the wafers.