This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key...This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key problemsrelated to water resources and security issues in North China in the 21st century are addressed, namely 1) the watercycle under environmental change, 2) agricultural water saving, and 3) water security. Development of internationalresearch related to these issues is also reviewed. The research plan developed recently by the Chinese Academy of Sciences(CAS) is discussed and suggestions on research and development of water resources science in North China are presented.Thanks to focus on experimental catchments and dedicated research stations, a detailed knowledge of the water cycle onNorth China farmland has been compiled. A range of techniques that include isotope tracers has been used to acquirehydrologic data. Much research has been devoted to developing distributed hydrological models at different scales. In thewell irrigation district, five different water saving irrigation regimes have been investigated, and these regimes have hadwidespread application, and reduced water use 60-150 mm while they increased water use efficiency (WUE) by 20%-30%.Furthermore, preventing water pollution is the most essential step to ensure North China’s water security.展开更多
The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, d...The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies.展开更多
Rice growth requires a large amount of water,and planting rice will increase the contradiction between supply and demand of water resources.Paddy field fllowing is important for the sustainable development of an agric...Rice growth requires a large amount of water,and planting rice will increase the contradiction between supply and demand of water resources.Paddy field fllowing is important for the sustainable development of an agricultural region,but it remains a great challenge to accurately and quickly monitor the extent and area of fallowed paddy fields.Paddy fields have unique physical features associated with paddy rice during the flooding and transplanting phases.By comparing the differences in phenology before and after paddy field fllowing,we proposed a phenology-based fallowed paddy field mapping algorithm.We used the Google Earth Engine(GEE)cloud computing platform and Landsat 8 images to extract the fllowed paddy field area on Sanjiang Plain of China in 2018.The results indicated that the Landsat8,GEE,and phenology-based fllowed paddy field mapping algorithm can effectively support the mapping of fallowed paddy fields on Sanjiang Plain of China.Based on remote sensing monitoring,the total fallowed paddy field area of Sanjiang Plain is 91543 ha.The resultant fallowed paddy field map is of high accuracy,with a producer(user)accuracy of 83%(81%),based on validation using ground-truth samples.The Landsat-based map also exhibits high consistency with the agricultural statistical data.We estimated that paddy field fallowing reduced irigation water by 384-521 million cubic meters on Sanjiang Plain in 2018.The research results can support subsidization grants for fallowed paddy fields,the evaluation of fallowed paddy field effects and improvement in subsequent fallowed paddy field policy in the future.展开更多
Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewat...Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewater crisis in the Northern Slope of Tianshan Mountains(NSTM) faces dual challenges because water demandsforfast-growing urban areas have put heavy pressure on water resources. The mountain-oasis-desert system featuresglacier-fed rivers that sustain intensive water use in the oasis and end in the desert as fragile terminal lakes.The complex balance between water conservation and economic development is subtle. This paper investigateschanges in hydroclimatic variables and water security-related issues on the NSTM. The spatiotemporal variationsin glaciers, climatic variables, rivers, lakes and reservoirs, groundwater, surface water, human water use, andstreamflow were analyzed for the past four decades. The results show that temperature in the NSTM exhibitedan apparent upward trend with a more significant warming rate in the higher altitude regions. Glacier massloss and shrinkage was strong. The average annual streamflow increased from 1980-1989 to 2006–2011 at mosthydrological stations. The monthly dynamics of surface water area showed notable variability at both inter-annual and seasonal scales, revealing the impacts of both natural and anthropogenic drivers on surface wateravailability in the region. The terrestrial water storage anomaly showed a decreasing trend, which might berelated to groundwater pumping for irrigation. Human water use for agriculture and industry grew with theincrease in cultivated land area and gross domestic product (GDP). The increased agricultural water use wasstrongly associated with the expansion of oases. It is unclear whether water availability would remain high underfuture climatic and hydrological uncertainties, posing challenges to water management. In the context of rapidurban growth and climate change, balancing water for humans and nature is vital in achieving the SustainableDevelopment Goals (SDGs) in NSTM. This study provides a baseline understanding of the interplay among water,climate change, and socio-economic development in NSTM. It would also shed light on wise water managementunder environmental changes for other rapidly developing mountain-oasis-desert systems worldwide.展开更多
Limited water resources, increasing demand, low use efficiency, and serious pollution result in severe water resource difficult in China. The evaluation of addressing water problems and the search for effective counte...Limited water resources, increasing demand, low use efficiency, and serious pollution result in severe water resource difficult in China. The evaluation of addressing water problems and the search for effective countermeasures that ensure sustainable water use are key to China's sustainable development. The “compound water security” consists of food security, life security, environmental security, and economic security. By establishing a conceptual model, the water security of China has been simulated in terms of four scenarios called BAU(the business-as-usual scenario), TEC(the technology and economics scenario), IVL(the institution, values, and lifestyles scenario) and TSD(toward sustainable development) in this paper. The results indicated that water crises, especially water shortages, are being experienced now and will continue to do so for a relatively long time in China and that it is possible to reach a basic balance between supply and demand of water and grain under the TSD developing pattern by a series of approaches including technological innovation, policy adjustments, and behaviour inducement.展开更多
Extreme seasonal water level fluctuations characterize natural floodplain lakes in monsoon regions, which are crucial for ensuring lake water security, including flood prevention water supply and health of aquatic eco...Extreme seasonal water level fluctuations characterize natural floodplain lakes in monsoon regions, which are crucial for ensuring lake water security, including flood prevention water supply and health of aquatic ecosystem. In order to achieve this goal, we established a hydrological regime assessment method based on a set of hydrological indicators for lakes with heavy seasonal water level fluctuations. The results suggest that time-sensitive hydrological indicators and specific time scales for various water security aspects must be considered. We discovered that it is more practical and meaningful to combine the water level classification derived from statistical analyses with characteristic hydrological values linked to water security. The case study of Poyang Lake results show that there are no discernable trends of Poyang Lake water regime status over the last 35 years, and the two periods of poor status are in accordance with climate variation in the lake basin area. Scholars and policy makers should focus on both floods and droughts, which are the main water security problems for Poyang Lake. It is hoped that this multi-scale and multi-element hydrological regime assessment method will provide new guidelines and methods for other international scholars of river and lake water assessment.展开更多
Weather extremes negatively affect socioeconomic developments in arid and semi-arid areas (ASALs) and increase vulnerability of residents to food and water insecurity. Thus, communities adapt to such extremes of weath...Weather extremes negatively affect socioeconomic developments in arid and semi-arid areas (ASALs) and increase vulnerability of residents to food and water insecurity. Thus, communities adapt to such extremes of weather using Traditional Ecological Knowledge (TEK) and/or Modern Technologies. Modern farming technologies and land resource developments in ASALs have in past ignored TEK, and in most cases led to undesired outcomes. It’s against this backdrop that this study was conceived to assess TEK among the Turkana people, its application and contribution to food and water security. The research adopted a cross-sectional social survey in collecting data from Central Turkana Sub-County residents. The study revealed that the Turkana people possess vast knowledge related to their environment;that this TEK plays a significant role in food production, preservation and in natural resource management. For instance, in 82% of the respondents use TEK in enhancing livestock production through the selection of livestock species that are suitable and drought tolerant;over 70% of them use TEK in reducing risk associated with livestock losses due to prolonged droughts. Further, TEK influenced the development and conservation of the water resources (r = 0.631;p < 0.01) including siting boreholes and wells. There was a strong correlation (r = 0.755;p < 0.01) between TEK and food security. TEK should be incorporated into the decision-making processes involving development projects within the ASALs.展开更多
This study discusses the present water security situation in Jordan and delineates the required policies and programs to reach at a more robust and resilient water security situation. Although Jordan has achieved much...This study discusses the present water security situation in Jordan and delineates the required policies and programs to reach at a more robust and resilient water security situation. Although Jordan has achieved much in securing the different components of its water sector system, some components have still to be adequately addressed and others strengthened. Increasing the available water resources, which is practically only possible by desalinating sea water at Aqaba under sole Jordanian sovereignty, is found to be the most important and vital issue in improving the country’s water security situation. It improves the security issues of providing dearly needed additional water, releases the overexploited aquifers and saves them from depletion and quality deterioration, allows introducing new industries to Jordan, de-sharpens the conflict on the shared water resources with Jordan’s neighboring countries and is expected to render these conflicts to a problem of royalty on water resources and not as it is at present a social, economic, human, environmental and political conflict. Desalination will also make Jordan more resilient to climate change. Infrastructure security must be strengthened in Jordan both against natural hazards and against intended sabotage and damage. Water quality protection from pollution and deterioration has still to be adequately addressed requiring strengthening of laws and regulations and their application. The already delineated surface and groundwater protection zones have to be strictly adhered when licensing human activities in addition to implementing cybersecurity best practices. In addition, technology-dependent management tools have to be strongly advanced using integrated water resources management to ensure sustainable resource management, detection and repair of physical water losses and illegal water tapings, pricing water at its opportunity cost, irrigation modernization, strict environmental impacts assessment and application wherever water resources and water infrastructures are involved, and strengthening of training and management programs.展开更多
In order to attain the water security goal, specifically in highly developingareas, delineation of pure and sustainable water resources is of utmostpriority. In the present study, a preliminary investigation of the gr...In order to attain the water security goal, specifically in highly developingareas, delineation of pure and sustainable water resources is of utmostpriority. In the present study, a preliminary investigation of the groundwaterchemistry was carried out. This was followed by assessing the suitabilityof groundwater to be used as an alternative and reliable resource for publicuse in the Khoyrasole block, Birbhum district, India. Altogether 15(fifteen)samples of groundwater, were collected from bore wells spread well overthe Khoyrasole block have been considered. After completing the chemicalanalysis of the groundwater samples, the study revealed the quality ofgroundwater. The spatial distribution of groundwater quality parameterssuch as pH, Total Dissolved solids (TDS), Hardness, Calcium, Magnesium,Sodium, Potassium, Iron, Chloride, Carbonate, Bicarbonate, Sulphate,Nitrate and Fluoride have also been studied. High to very high levels ofiron and fluoride have been observed to be present in 67% and53% of thesamples respectively. Based upon the calculated parameters like SAR,MAR, PI and Chloro Alkaline Indices, groundwater of Khoyrasole blockis majorly suitable for the purpose of agriculture and irrigation. Plotting ofionic scatter plots and geochemical facies also indicate the water samplesto be of “fresh water” category, with no dominant cation or anion playing aselectively dominant role in influencing the groundwater chemistry in thestudy area.展开更多
The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of ...The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of over-exploited groundwater has reached over 1000×10^8m^3. It is important to note that the exploitation of water resources in HRB was reasonable before 1979. After 1980, however, over-exploitation happened with an annual average amount of 40×10^8m^3. Both the dry season and rapid economic growth in HRB took place at the same time. Therefore, the over-exploitation of water in HRB was actually the negative result of the conjunction of a continuous dry season and rapid economic growth. So the over-exploitation would not be as serious as it is today if either of the above two stopped. After the first stage of south-to-north water transfer project, the water shortage problem in HRB could be eased for the following reasons: firstly, water transfer project will bring to the Basin 60x108m3 water resources; secondly, a wet season will come back eventually according to natural law of climate variability; finally, its agricultural and industrial use and total water consumption all have decreased from the peak value, so that the groundwater table will raise certainly and ecological water in rivers and lakes that were dried-up will be partly restored. In the future, the main problem of water resources security in HRB will include water pollution, operation risk of the south-to-north water transfer project, groundwater pollution and engineering geological hazards that may be brought by groundwater rise. The proposed countermeasures are as follows: keeping strengthening water demand management, raising water price as well as subsidies for the low- income family and improving other water related policies, preventing and dealing with water pollution seriously and getting fully prepared for the operation of south-to-north water transfer project.展开更多
Northeast China is an important base for grain production,dominated by rain-fed agriculture that relies on green water.However,in the context of global climate change,rising regional temperatures,changing precipitatio...Northeast China is an important base for grain production,dominated by rain-fed agriculture that relies on green water.However,in the context of global climate change,rising regional temperatures,changing precipitation patterns,and increasing drought frequency pose threats and challenges to agricultural green water security.This study provides a detailed assessment of the spatiotemporal characteristics and development trends of green water security risks in the Northeast region under the base period(2001-2020)and the future(2031-2090)climate change scenarios(SSP245 and SSP585)using the green water scarcity(GWS)index based on raster-scale crop spatial distribution data,Delta downscaling bias-corrected ERA5 data,and CMIP6 multimodal data.During the base period,the green water risk-free zone for dry crops is mainly distributed in the center and east of the Northeast region(72.4% of the total area),the low-risk zone is primarily located in the center(14.0%),and the medium-risk(8.3%)and high-risk(5.3%)zones are mostly in the west.Under SSP245 and SSP585 future climate change scenarios,the green water security risk shows an overall expansion from the west to the center and east,with the low-risk zone increasing to 21.6% and 23.8%,the medium-risk zone increasing to 16.0% and 17.9%,and the high-risk zone increasing to 6.9% and 6.8%,respectively.Considering dry crops with GWS greater than 0.1 as in need of irrigation,the irrigated area increases from 27.6%(base period)to 44.5%(SSP245)and 48.6%(SSP585),with corresponding increases in irrigation water requirement(IWR)of 4.64 and 5.92 billion m~3,respectively,which further exacerbates conflicts between supply and demand of agricultural water resources.In response to agricultural green water security risks,coping strategies such as evapotranspiration(ET)-based water resource management for dry crops and deficit irrigation are proposed.The results of this study can provide scientific basis and decision support for the development of Northeast irrigated agriculture and the construction planning of the national water network.展开更多
Purpose–This study aims to develop a cause-effect relationship between criteria that contribute to water security using the Intuitionistic Fuzzy-Decision-Making Trial and Evaluation Laboratory(IF-DEMATEL)method.Diffe...Purpose–This study aims to develop a cause-effect relationship between criteria that contribute to water security using the Intuitionistic Fuzzy-Decision-Making Trial and Evaluation Laboratory(IF-DEMATEL)method.Differently from the typical DEMATEL which utilizes crisp numbers,this modification introduces intuitionistic fuzzy numbers(IFNs)to enhance judgments in a group decision-making environment.In particular,the linguistic variables used in IF-DEMATEL are defined using the concept of three-tuple of IFNs.Design/methodology/approach–Data with the linguistic variable“influence”were collected from a group of experts in water security via personalunstructured interviews.Seven water security criteria are considered in this study.Computational software was employed to execute the computational procedures of the IF-DEMATEL method.It is anticipated that by taking into account the hesitation degree of IFNs will reflect the scenario in real life,which could lead to precise decision-making.Findings–Theresultsshowthat“Over-Abstraction”,“SaltwaterIntrusion”and“LimitedInfrastructures”are the cause criteria that contribute to water security.In addition,the relationship map of influence shows that“Water Pollution”and“Rapid Urbanization”are the most vulnerable criteria as these two criteria are most easily affected by other criteria in a unidirectional relation.Practicalimplications–It is anticipated that these findings will serve as useful references for water security management and policymakers.Originality/value–The present study makes a noteworthy contribution to the modification of DEMATEL where three-tuple of intuitionistic fuzzy numbers are considered in the computations.The present study also provides additional evidence with respect to factors that contribute to water security.展开更多
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate...Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.展开更多
River managers in Australia are managing in the face of extremes to provide security of water supply for people, production and the environment. Balancing the water requirements of people, environments and econo- mies...River managers in Australia are managing in the face of extremes to provide security of water supply for people, production and the environment. Balancing the water requirements of people, environments and econo- mies requires that water security is viewed holistically, not just in terms of the water available for human consump- tion. Common definitions of water security focus on the needs of both humans and ecosystems for purposes such as drinking, agriculture and industrial use, and to maintain ecological values. Information about achieving water security for the environment or ecological purposes can be a challenge to interpret because the watering require- ments of key ecological processes or assets are not well understood, and the links between ecological and human values are often not obvious to water users. Yet the concepts surrounding river health are inherently linked to holistic concepts of water security. The measurement of aquatic biota provides a valuable tool for managers to understand progress toward achieving ecological water security objectives. This paper provides a comprehensive review of the reference condition approach to river health assessment, using the development of the Australian River Assessment System (AUSRIVAS) as a case study. We make the link between the biological assessment of river health and assessment of ecological water security, and suggest that such an approach provides a way of reporting that is relevant to the contribution made by ecosystems to water security. The reference condition approach, which is the condition representative of minimally disturbed sites organized by selected physical, chemical, and biological characteristics, is most important for assessing ecological water security objectives.展开更多
Water security is a widely concerned issue in the world nowadays.A new method,water poverty index(WPI),was applied to evaluate the regional water security.Twelve state farms in Heilongjiang Province,Northeastern China...Water security is a widely concerned issue in the world nowadays.A new method,water poverty index(WPI),was applied to evaluate the regional water security.Twelve state farms in Heilongjiang Province,Northeastern China were selected to evaluate water security status based on the data of 2006 using WPI and mean deviation grading method.The method of WPI includes five key indices:resources(R),access(A),capacity(C),utilization(U)and environment(E).Each key index further consists of several sub-indices.According to the results of WPI,the grade of each farm was calculated by using the method of mean deviation grading.Thus,the radar images can be protracted of each farm.From the radar images,the conclusions can be drawn that the WPI values of Farm 853 and Hongqiling are under very safe status,while that of Farm Raohe is under safe status,those of Farms Youyi,597,852,291 and Jiangchuan are under moderate safe status,that of Farm Beixing is under low safe status and those of Farm Shuangyashan,Shuguang and Baoshan are under unsafe status.The results from this study can provide basic information for decision making on rational utilization of water resources and regulations for regional water safety guarantee system.展开更多
Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water c...Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water conservation zone for the Beijing-Tianjin-Hebei coordinated development area, so its water security is crucial for the entire Beijing-Tianjin-Hebei region. Therefore, it is of vital significance to determine the zoning management of water resources and decision-making according to the magnitude of water resource security risks. This study built an indicator system for water security risk assessment in line with the principles of scientific validity, comparability, operability, and data availability, and this system gives weights to these indicators using the AHP approach. County-level multi-source data for the study area, based on water resource zones, were collected by using mathematical statistics and 3 S technology. With normalized data and a weighting method the water security risks were calculated. The results showed large spatial variations of water security risks in Zhangjiakou on the scales of geomorphic and administrative units as well as river basins. High-risk areas are extensive in the Bashang Plateau, and extremely high risk values are found in the Baxia areas. On the watershed scale, high-risk areas are mainly distributed in the inland river basins and the Yongding River basin. The risk values of the Luanhe River, Chaobai River and Daqing River basins in the Zhangjiakou region tend to decrease from north to south. For the northern and western areas of the Bashang Plateau, the factor of "vulnerability of the disaster-prone environment" contributes the most to the water security risk level. Agricultural water use constrains industrial and ecological water use, but in the context of inadequate water resource endowments, the urban population concentration and industrial development are the main causes of water shortages and water pollution so they contribute more to water security risks. This study of the spatial variation of water security risks in Zhangjiakou can provide an important scientific reference for zone-based management and decision-making for reducing the water security risks in the farming-pastoral ecotone.展开更多
Early detection of environmental disruption, unintentional or otherwise, is increasingly desired to ensure hazard minimization in many settings. Here, using a field-portable, smartphone fluorimeter to assess water qua...Early detection of environmental disruption, unintentional or otherwise, is increasingly desired to ensure hazard minimization in many settings. Here, using a field-portable, smartphone fluorimeter to assess water quality based on the pH response of a designer probe, a map of pH of public tap water sites has been obtained. A custom designed Android application digitally processed and mapped the results utilizing the global positioning system (GPS) service of the smartphone. The map generated indicates no disruption in pH for all sites measured, and all the data are assessed to fall inside the upper limit of local government regulations, consistent with authority reported measurements. This implementation demonstrates a new security concept: network environmental forensics utilizing the potential of novel smartgrid analysis with wireless sensors for the detection of potential disruption to water quality at any point in the city. This concept is applicable across all smartgrid strategies within the next generation of the Internet of Things and can be extended on national and global scales to address a range of target analytes, both chemical and biological.展开更多
Science and policy have been interlinked for decades and perform essential nexus conditions in the governing aspects of environmental scenarios.This review paper examines the present challenges in the science–policy ...Science and policy have been interlinked for decades and perform essential nexus conditions in the governing aspects of environmental scenarios.This review paper examines the present challenges in the science–policy interface in terms of water governance in the Caspian Sea and identifies effective conditions that may be used in the current context to enhance the mechanism.The evaluation of the science–policy link in the water policy of the Caspian Sea reveals a gap between knowledge producer and governance system,impeding the translation of scientific information into action.Complicated and context-dependent solutions make it challenging to establish effective science–policy processes in the Caspian Sea water governance settings.Establishing a common governing authority,implementing water and resource management regulations,and protecting the natural environment through legal frameworks are crucial steps to address these concerns and ensure sustainable development.Collaboration among coastal states is essential in environmental,economic,and social aspects of regional development.However,the lack of a comprehensive approach,coherent activities,and effective utilization of national and regional power has hindered efforts to halt the environmental degradation of the Caspian Sea.Local governments need to recognize their responsibility to protect and utilize the Caspian Sea for present and future generations,considering both environmental and human security.The interlinkage of the Caspian Sea water governance with the Organization for Economic Co-operation and Development(OECD)water governance principles offers a framework for policymakers to assess gaps and make necessary amendments to existing mechanisms.Effective science–policy interaction,engagement of diverse stakeholders,institutionalizing agreements,and addressing collective action issues are critical for successful water governance.展开更多
This paper examines the current status of water resource management and conservation in China,along with strategies to address the water resource crisis.Given the current situation,the paper highlights issues such as ...This paper examines the current status of water resource management and conservation in China,along with strategies to address the water resource crisis.Given the current situation,the paper highlights issues such as incomplete legal mechanisms,limited environmental awareness among enterprises,and insufficient government investment.To ad-dress these challenges,the paper proposes a series of strategies,including improving the ecological environment,enhanc-ing production techniques,strengthening management systems,rationalizing water resource allocation,and implementing water-saving measures in both industrial and agricultural production.These strategies serve to achieve sustainable water resource management,reduce water pollution,and effectively tackle the pressing water resource issues faced in China currently.展开更多
Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance o...Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.展开更多
基金the Knowledge Innovation Key Project of the Chinese Academy of Sciences (Nos. KZCX2-SW-317/CX10G-E01-08 and KZCX1-09-02) and the National Natural Science Foundation of China (No. 50279049).
文摘This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key problemsrelated to water resources and security issues in North China in the 21st century are addressed, namely 1) the watercycle under environmental change, 2) agricultural water saving, and 3) water security. Development of internationalresearch related to these issues is also reviewed. The research plan developed recently by the Chinese Academy of Sciences(CAS) is discussed and suggestions on research and development of water resources science in North China are presented.Thanks to focus on experimental catchments and dedicated research stations, a detailed knowledge of the water cycle onNorth China farmland has been compiled. A range of techniques that include isotope tracers has been used to acquirehydrologic data. Much research has been devoted to developing distributed hydrological models at different scales. In thewell irrigation district, five different water saving irrigation regimes have been investigated, and these regimes have hadwidespread application, and reduced water use 60-150 mm while they increased water use efficiency (WUE) by 20%-30%.Furthermore, preventing water pollution is the most essential step to ensure North China’s water security.
基金supported by the National Natural Science Foundation of China(Grants No.51190094,50909073,and 51179130)the Hubei Province Natural Science Foundation(Grant No.2010CDB08401)
文摘The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies.
基金supported by the National Key Research and Development Program of China (2016YFD0300604-4)the Academic Backbone Project of Northeast Agricultural University,Chinathe Jilin Scientific and Technological Development Program,China (20170301001NY)。
文摘Rice growth requires a large amount of water,and planting rice will increase the contradiction between supply and demand of water resources.Paddy field fllowing is important for the sustainable development of an agricultural region,but it remains a great challenge to accurately and quickly monitor the extent and area of fallowed paddy fields.Paddy fields have unique physical features associated with paddy rice during the flooding and transplanting phases.By comparing the differences in phenology before and after paddy field fllowing,we proposed a phenology-based fallowed paddy field mapping algorithm.We used the Google Earth Engine(GEE)cloud computing platform and Landsat 8 images to extract the fllowed paddy field area on Sanjiang Plain of China in 2018.The results indicated that the Landsat8,GEE,and phenology-based fllowed paddy field mapping algorithm can effectively support the mapping of fallowed paddy fields on Sanjiang Plain of China.Based on remote sensing monitoring,the total fallowed paddy field area of Sanjiang Plain is 91543 ha.The resultant fallowed paddy field map is of high accuracy,with a producer(user)accuracy of 83%(81%),based on validation using ground-truth samples.The Landsat-based map also exhibits high consistency with the agricultural statistical data.We estimated that paddy field fallowing reduced irigation water by 384-521 million cubic meters on Sanjiang Plain in 2018.The research results can support subsidization grants for fallowed paddy fields,the evaluation of fallowed paddy field effects and improvement in subsequent fallowed paddy field policy in the future.
基金This work is supported by the Third Xinjiang Scientific Expedition Program(Grant No.2021xjkk0800).Thanks to Professor Lu Zhang for his valuable comments.
文摘Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewater crisis in the Northern Slope of Tianshan Mountains(NSTM) faces dual challenges because water demandsforfast-growing urban areas have put heavy pressure on water resources. The mountain-oasis-desert system featuresglacier-fed rivers that sustain intensive water use in the oasis and end in the desert as fragile terminal lakes.The complex balance between water conservation and economic development is subtle. This paper investigateschanges in hydroclimatic variables and water security-related issues on the NSTM. The spatiotemporal variationsin glaciers, climatic variables, rivers, lakes and reservoirs, groundwater, surface water, human water use, andstreamflow were analyzed for the past four decades. The results show that temperature in the NSTM exhibitedan apparent upward trend with a more significant warming rate in the higher altitude regions. Glacier massloss and shrinkage was strong. The average annual streamflow increased from 1980-1989 to 2006–2011 at mosthydrological stations. The monthly dynamics of surface water area showed notable variability at both inter-annual and seasonal scales, revealing the impacts of both natural and anthropogenic drivers on surface wateravailability in the region. The terrestrial water storage anomaly showed a decreasing trend, which might berelated to groundwater pumping for irrigation. Human water use for agriculture and industry grew with theincrease in cultivated land area and gross domestic product (GDP). The increased agricultural water use wasstrongly associated with the expansion of oases. It is unclear whether water availability would remain high underfuture climatic and hydrological uncertainties, posing challenges to water management. In the context of rapidurban growth and climate change, balancing water for humans and nature is vital in achieving the SustainableDevelopment Goals (SDGs) in NSTM. This study provides a baseline understanding of the interplay among water,climate change, and socio-economic development in NSTM. It would also shed light on wise water managementunder environmental changes for other rapidly developing mountain-oasis-desert systems worldwide.
文摘Limited water resources, increasing demand, low use efficiency, and serious pollution result in severe water resource difficult in China. The evaluation of addressing water problems and the search for effective countermeasures that ensure sustainable water use are key to China's sustainable development. The “compound water security” consists of food security, life security, environmental security, and economic security. By establishing a conceptual model, the water security of China has been simulated in terms of four scenarios called BAU(the business-as-usual scenario), TEC(the technology and economics scenario), IVL(the institution, values, and lifestyles scenario) and TSD(toward sustainable development) in this paper. The results indicated that water crises, especially water shortages, are being experienced now and will continue to do so for a relatively long time in China and that it is possible to reach a basic balance between supply and demand of water and grain under the TSD developing pattern by a series of approaches including technological innovation, policy adjustments, and behaviour inducement.
基金Under the auspices of Key Research Program of the Chinese Academy of Sciences(No.KFZD-SW-318)National Science Foundation of China(No.41571107)National Basic Research Program of China(No.2012CB417006)
文摘Extreme seasonal water level fluctuations characterize natural floodplain lakes in monsoon regions, which are crucial for ensuring lake water security, including flood prevention water supply and health of aquatic ecosystem. In order to achieve this goal, we established a hydrological regime assessment method based on a set of hydrological indicators for lakes with heavy seasonal water level fluctuations. The results suggest that time-sensitive hydrological indicators and specific time scales for various water security aspects must be considered. We discovered that it is more practical and meaningful to combine the water level classification derived from statistical analyses with characteristic hydrological values linked to water security. The case study of Poyang Lake results show that there are no discernable trends of Poyang Lake water regime status over the last 35 years, and the two periods of poor status are in accordance with climate variation in the lake basin area. Scholars and policy makers should focus on both floods and droughts, which are the main water security problems for Poyang Lake. It is hoped that this multi-scale and multi-element hydrological regime assessment method will provide new guidelines and methods for other international scholars of river and lake water assessment.
文摘Weather extremes negatively affect socioeconomic developments in arid and semi-arid areas (ASALs) and increase vulnerability of residents to food and water insecurity. Thus, communities adapt to such extremes of weather using Traditional Ecological Knowledge (TEK) and/or Modern Technologies. Modern farming technologies and land resource developments in ASALs have in past ignored TEK, and in most cases led to undesired outcomes. It’s against this backdrop that this study was conceived to assess TEK among the Turkana people, its application and contribution to food and water security. The research adopted a cross-sectional social survey in collecting data from Central Turkana Sub-County residents. The study revealed that the Turkana people possess vast knowledge related to their environment;that this TEK plays a significant role in food production, preservation and in natural resource management. For instance, in 82% of the respondents use TEK in enhancing livestock production through the selection of livestock species that are suitable and drought tolerant;over 70% of them use TEK in reducing risk associated with livestock losses due to prolonged droughts. Further, TEK influenced the development and conservation of the water resources (r = 0.631;p < 0.01) including siting boreholes and wells. There was a strong correlation (r = 0.755;p < 0.01) between TEK and food security. TEK should be incorporated into the decision-making processes involving development projects within the ASALs.
文摘This study discusses the present water security situation in Jordan and delineates the required policies and programs to reach at a more robust and resilient water security situation. Although Jordan has achieved much in securing the different components of its water sector system, some components have still to be adequately addressed and others strengthened. Increasing the available water resources, which is practically only possible by desalinating sea water at Aqaba under sole Jordanian sovereignty, is found to be the most important and vital issue in improving the country’s water security situation. It improves the security issues of providing dearly needed additional water, releases the overexploited aquifers and saves them from depletion and quality deterioration, allows introducing new industries to Jordan, de-sharpens the conflict on the shared water resources with Jordan’s neighboring countries and is expected to render these conflicts to a problem of royalty on water resources and not as it is at present a social, economic, human, environmental and political conflict. Desalination will also make Jordan more resilient to climate change. Infrastructure security must be strengthened in Jordan both against natural hazards and against intended sabotage and damage. Water quality protection from pollution and deterioration has still to be adequately addressed requiring strengthening of laws and regulations and their application. The already delineated surface and groundwater protection zones have to be strictly adhered when licensing human activities in addition to implementing cybersecurity best practices. In addition, technology-dependent management tools have to be strongly advanced using integrated water resources management to ensure sustainable resource management, detection and repair of physical water losses and illegal water tapings, pricing water at its opportunity cost, irrigation modernization, strict environmental impacts assessment and application wherever water resources and water infrastructures are involved, and strengthening of training and management programs.
文摘In order to attain the water security goal, specifically in highly developingareas, delineation of pure and sustainable water resources is of utmostpriority. In the present study, a preliminary investigation of the groundwaterchemistry was carried out. This was followed by assessing the suitabilityof groundwater to be used as an alternative and reliable resource for publicuse in the Khoyrasole block, Birbhum district, India. Altogether 15(fifteen)samples of groundwater, were collected from bore wells spread well overthe Khoyrasole block have been considered. After completing the chemicalanalysis of the groundwater samples, the study revealed the quality ofgroundwater. The spatial distribution of groundwater quality parameterssuch as pH, Total Dissolved solids (TDS), Hardness, Calcium, Magnesium,Sodium, Potassium, Iron, Chloride, Carbonate, Bicarbonate, Sulphate,Nitrate and Fluoride have also been studied. High to very high levels ofiron and fluoride have been observed to be present in 67% and53% of thesamples respectively. Based upon the calculated parameters like SAR,MAR, PI and Chloro Alkaline Indices, groundwater of Khoyrasole blockis majorly suitable for the purpose of agriculture and irrigation. Plotting ofionic scatter plots and geochemical facies also indicate the water samplesto be of “fresh water” category, with no dominant cation or anion playing aselectively dominant role in influencing the groundwater chemistry in thestudy area.
基金supported by the National Natural Sciences Fund of China (40971298)
文摘The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of over-exploited groundwater has reached over 1000×10^8m^3. It is important to note that the exploitation of water resources in HRB was reasonable before 1979. After 1980, however, over-exploitation happened with an annual average amount of 40×10^8m^3. Both the dry season and rapid economic growth in HRB took place at the same time. Therefore, the over-exploitation of water in HRB was actually the negative result of the conjunction of a continuous dry season and rapid economic growth. So the over-exploitation would not be as serious as it is today if either of the above two stopped. After the first stage of south-to-north water transfer project, the water shortage problem in HRB could be eased for the following reasons: firstly, water transfer project will bring to the Basin 60x108m3 water resources; secondly, a wet season will come back eventually according to natural law of climate variability; finally, its agricultural and industrial use and total water consumption all have decreased from the peak value, so that the groundwater table will raise certainly and ecological water in rivers and lakes that were dried-up will be partly restored. In the future, the main problem of water resources security in HRB will include water pollution, operation risk of the south-to-north water transfer project, groundwater pollution and engineering geological hazards that may be brought by groundwater rise. The proposed countermeasures are as follows: keeping strengthening water demand management, raising water price as well as subsidies for the low- income family and improving other water related policies, preventing and dealing with water pollution seriously and getting fully prepared for the operation of south-to-north water transfer project.
基金supported by the Strategic Priority Research Program(Class A)of the Chinese Academy of Sciences(Grant No.XDA28020501)the Strategic Research and Consulting Program of the Chinese Academy of Engineering(Grant No.JL2023-17)。
文摘Northeast China is an important base for grain production,dominated by rain-fed agriculture that relies on green water.However,in the context of global climate change,rising regional temperatures,changing precipitation patterns,and increasing drought frequency pose threats and challenges to agricultural green water security.This study provides a detailed assessment of the spatiotemporal characteristics and development trends of green water security risks in the Northeast region under the base period(2001-2020)and the future(2031-2090)climate change scenarios(SSP245 and SSP585)using the green water scarcity(GWS)index based on raster-scale crop spatial distribution data,Delta downscaling bias-corrected ERA5 data,and CMIP6 multimodal data.During the base period,the green water risk-free zone for dry crops is mainly distributed in the center and east of the Northeast region(72.4% of the total area),the low-risk zone is primarily located in the center(14.0%),and the medium-risk(8.3%)and high-risk(5.3%)zones are mostly in the west.Under SSP245 and SSP585 future climate change scenarios,the green water security risk shows an overall expansion from the west to the center and east,with the low-risk zone increasing to 21.6% and 23.8%,the medium-risk zone increasing to 16.0% and 17.9%,and the high-risk zone increasing to 6.9% and 6.8%,respectively.Considering dry crops with GWS greater than 0.1 as in need of irrigation,the irrigated area increases from 27.6%(base period)to 44.5%(SSP245)and 48.6%(SSP585),with corresponding increases in irrigation water requirement(IWR)of 4.64 and 5.92 billion m~3,respectively,which further exacerbates conflicts between supply and demand of agricultural water resources.In response to agricultural green water security risks,coping strategies such as evapotranspiration(ET)-based water resource management for dry crops and deficit irrigation are proposed.The results of this study can provide scientific basis and decision support for the development of Northeast irrigated agriculture and the construction planning of the national water network.
文摘Purpose–This study aims to develop a cause-effect relationship between criteria that contribute to water security using the Intuitionistic Fuzzy-Decision-Making Trial and Evaluation Laboratory(IF-DEMATEL)method.Differently from the typical DEMATEL which utilizes crisp numbers,this modification introduces intuitionistic fuzzy numbers(IFNs)to enhance judgments in a group decision-making environment.In particular,the linguistic variables used in IF-DEMATEL are defined using the concept of three-tuple of IFNs.Design/methodology/approach–Data with the linguistic variable“influence”were collected from a group of experts in water security via personalunstructured interviews.Seven water security criteria are considered in this study.Computational software was employed to execute the computational procedures of the IF-DEMATEL method.It is anticipated that by taking into account the hesitation degree of IFNs will reflect the scenario in real life,which could lead to precise decision-making.Findings–Theresultsshowthat“Over-Abstraction”,“SaltwaterIntrusion”and“LimitedInfrastructures”are the cause criteria that contribute to water security.In addition,the relationship map of influence shows that“Water Pollution”and“Rapid Urbanization”are the most vulnerable criteria as these two criteria are most easily affected by other criteria in a unidirectional relation.Practicalimplications–It is anticipated that these findings will serve as useful references for water security management and policymakers.Originality/value–The present study makes a noteworthy contribution to the modification of DEMATEL where three-tuple of intuitionistic fuzzy numbers are considered in the computations.The present study also provides additional evidence with respect to factors that contribute to water security.
文摘Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.
文摘River managers in Australia are managing in the face of extremes to provide security of water supply for people, production and the environment. Balancing the water requirements of people, environments and econo- mies requires that water security is viewed holistically, not just in terms of the water available for human consump- tion. Common definitions of water security focus on the needs of both humans and ecosystems for purposes such as drinking, agriculture and industrial use, and to maintain ecological values. Information about achieving water security for the environment or ecological purposes can be a challenge to interpret because the watering require- ments of key ecological processes or assets are not well understood, and the links between ecological and human values are often not obvious to water users. Yet the concepts surrounding river health are inherently linked to holistic concepts of water security. The measurement of aquatic biota provides a valuable tool for managers to understand progress toward achieving ecological water security objectives. This paper provides a comprehensive review of the reference condition approach to river health assessment, using the development of the Australian River Assessment System (AUSRIVAS) as a case study. We make the link between the biological assessment of river health and assessment of ecological water security, and suggest that such an approach provides a way of reporting that is relevant to the contribution made by ecosystems to water security. The reference condition approach, which is the condition representative of minimally disturbed sites organized by selected physical, chemical, and biological characteristics, is most important for assessing ecological water security objectives.
基金National Natural Science Foundation of China(No.30400275)Science&Technology Tackle Key Problem Program of Heilongjiang Province(No.GB06B106-7).
文摘Water security is a widely concerned issue in the world nowadays.A new method,water poverty index(WPI),was applied to evaluate the regional water security.Twelve state farms in Heilongjiang Province,Northeastern China were selected to evaluate water security status based on the data of 2006 using WPI and mean deviation grading method.The method of WPI includes five key indices:resources(R),access(A),capacity(C),utilization(U)and environment(E).Each key index further consists of several sub-indices.According to the results of WPI,the grade of each farm was calculated by using the method of mean deviation grading.Thus,the radar images can be protracted of each farm.From the radar images,the conclusions can be drawn that the WPI values of Farm 853 and Hongqiling are under very safe status,while that of Farm Raohe is under safe status,those of Farms Youyi,597,852,291 and Jiangchuan are under moderate safe status,that of Farm Beixing is under low safe status and those of Farm Shuangyashan,Shuguang and Baoshan are under unsafe status.The results from this study can provide basic information for decision making on rational utilization of water resources and regulations for regional water safety guarantee system.
基金The National Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07101001)Guizhou Normal University Doctoral Funds (GZNUD20178, GZNUD20179)Science and Technology Program of Guizhou Province (20191218, 20191222, 20201Z031)。
文摘Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water conservation zone for the Beijing-Tianjin-Hebei coordinated development area, so its water security is crucial for the entire Beijing-Tianjin-Hebei region. Therefore, it is of vital significance to determine the zoning management of water resources and decision-making according to the magnitude of water resource security risks. This study built an indicator system for water security risk assessment in line with the principles of scientific validity, comparability, operability, and data availability, and this system gives weights to these indicators using the AHP approach. County-level multi-source data for the study area, based on water resource zones, were collected by using mathematical statistics and 3 S technology. With normalized data and a weighting method the water security risks were calculated. The results showed large spatial variations of water security risks in Zhangjiakou on the scales of geomorphic and administrative units as well as river basins. High-risk areas are extensive in the Bashang Plateau, and extremely high risk values are found in the Baxia areas. On the watershed scale, high-risk areas are mainly distributed in the inland river basins and the Yongding River basin. The risk values of the Luanhe River, Chaobai River and Daqing River basins in the Zhangjiakou region tend to decrease from north to south. For the northern and western areas of the Bashang Plateau, the factor of "vulnerability of the disaster-prone environment" contributes the most to the water security risk level. Agricultural water use constrains industrial and ecological water use, but in the context of inadequate water resource endowments, the urban population concentration and industrial development are the main causes of water shortages and water pollution so they contribute more to water security risks. This study of the spatial variation of water security risks in Zhangjiakou can provide an important scientific reference for zone-based management and decision-making for reducing the water security risks in the farming-pastoral ecotone.
文摘Early detection of environmental disruption, unintentional or otherwise, is increasingly desired to ensure hazard minimization in many settings. Here, using a field-portable, smartphone fluorimeter to assess water quality based on the pH response of a designer probe, a map of pH of public tap water sites has been obtained. A custom designed Android application digitally processed and mapped the results utilizing the global positioning system (GPS) service of the smartphone. The map generated indicates no disruption in pH for all sites measured, and all the data are assessed to fall inside the upper limit of local government regulations, consistent with authority reported measurements. This implementation demonstrates a new security concept: network environmental forensics utilizing the potential of novel smartgrid analysis with wireless sensors for the detection of potential disruption to water quality at any point in the city. This concept is applicable across all smartgrid strategies within the next generation of the Internet of Things and can be extended on national and global scales to address a range of target analytes, both chemical and biological.
基金supported by University of Galway,Galway,Ireland.
文摘Science and policy have been interlinked for decades and perform essential nexus conditions in the governing aspects of environmental scenarios.This review paper examines the present challenges in the science–policy interface in terms of water governance in the Caspian Sea and identifies effective conditions that may be used in the current context to enhance the mechanism.The evaluation of the science–policy link in the water policy of the Caspian Sea reveals a gap between knowledge producer and governance system,impeding the translation of scientific information into action.Complicated and context-dependent solutions make it challenging to establish effective science–policy processes in the Caspian Sea water governance settings.Establishing a common governing authority,implementing water and resource management regulations,and protecting the natural environment through legal frameworks are crucial steps to address these concerns and ensure sustainable development.Collaboration among coastal states is essential in environmental,economic,and social aspects of regional development.However,the lack of a comprehensive approach,coherent activities,and effective utilization of national and regional power has hindered efforts to halt the environmental degradation of the Caspian Sea.Local governments need to recognize their responsibility to protect and utilize the Caspian Sea for present and future generations,considering both environmental and human security.The interlinkage of the Caspian Sea water governance with the Organization for Economic Co-operation and Development(OECD)water governance principles offers a framework for policymakers to assess gaps and make necessary amendments to existing mechanisms.Effective science–policy interaction,engagement of diverse stakeholders,institutionalizing agreements,and addressing collective action issues are critical for successful water governance.
文摘This paper examines the current status of water resource management and conservation in China,along with strategies to address the water resource crisis.Given the current situation,the paper highlights issues such as incomplete legal mechanisms,limited environmental awareness among enterprises,and insufficient government investment.To ad-dress these challenges,the paper proposes a series of strategies,including improving the ecological environment,enhanc-ing production techniques,strengthening management systems,rationalizing water resource allocation,and implementing water-saving measures in both industrial and agricultural production.These strategies serve to achieve sustainable water resource management,reduce water pollution,and effectively tackle the pressing water resource issues faced in China currently.
基金This work was supported by the Knowledge Innovation Program from the Cold and Add Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CACX2003102)the Chinese Academy of Sciences (KZCX 1 - 10-03-01)the National Natural Science Foundation of China (40401012).
文摘Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.