Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causin...Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.展开更多
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph...The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data.展开更多
Water color is a crucial optical indicator of water quality,polluted water bodies often show water color anomalies.To comprehensively understand the occurrence of water color anomalies in inland lakes,an integrated me...Water color is a crucial optical indicator of water quality,polluted water bodies often show water color anomalies.To comprehensively understand the occurrence of water color anomalies in inland lakes,an integrated method was designed using the hue angle based on the Forel-Ule Index(FUI)model,and other remote sensing indices,including the Turbid Water Index(TWI),Floating Algae Index(FAI),and Cyanobacteria and Macrophytes Index(CMI).Based on all available Landsat-8 OLI images from 2013 to 2020,continuous monitoring was conducted in three different lakes in the middle of the Yangtze River,China.The results demonstrated that:(1)The proposed method can accurately identify algal blooms,high sediment loads,and eutrophication from the abnormal water color areas;(2)The calculated hue angles of sediment-dominated water were significantly higher than those of algal blooms and aquatic vegetation,providing a noticeable visual discoloration of water;(3)These water color anomalies exhibited significant correlations with the water quality and environmental conditions.This study serves as an example for accurate and spatially continuous assessment of water color anomaly and supports practical information to facilitate local water environment conservation.展开更多
Long-term droughts significantly impact surface and groundwater resources in India,however,observed changes in major river basins have not been well explored.Here we use Standardized Precipitation Index(SPI)and Standa...Long-term droughts significantly impact surface and groundwater resources in India,however,observed changes in major river basins have not been well explored.Here we use Standardized Precipitation Index(SPI)and Standardized Precipitation Evapotranspiration Index(SPEI)at three different time scales(24,48,and 60 months)to identify long-term droughts in India for the observed record of 1951-2015.Drought characteristics(extent,events,frequency,and intensity)are analyzed for different river basins in India.Increasing trend in the areal extent of droughts is observed in two methods with three time scales in the maximum area(63.66%)in India.We use the data from the Gravity Recovery and Climate Experiment(GRACE)to estimate the changes in the terrestrial water storage(TWS)during the period 2002-2015.We identify that major long-term droughts in India occurred from 1966 to 1969,1972,1986-1987,and 2002-2004.The all-India average TWS shows a negative trend from 2002 to 2015 with prominent decline in north Indian river basins and positive trend in south Indian river basins.SPI and SPEI at longer time scales are positively associated with TWS indicating the adverse impacts of droughts on surface and groundwater resources in such a populated region.展开更多
Water shows anomalies different from most of other materials.Different sceniaros have been proposed to explain water anomalies,among which the liquid-liquid phase transition(LLPT)is the most discussed one.It attribute...Water shows anomalies different from most of other materials.Different sceniaros have been proposed to explain water anomalies,among which the liquid-liquid phase transition(LLPT)is the most discussed one.It attributes water anomalies to the existence of a hypothesized liquid-liquid critical point(LLCP)buried deep in the supercooled region.We briefly review the recent experimental and theoretical progresses on the study of the LLPT in water.These studies include the discussion on the existence of the first order LLPT in supercooled water and the detection of liquid-liquid critical point.Simulational results of different water models for LLPT and the experimental evidence in confined water are also discussed.展开更多
基金sponsored by the National Natural Science Foundation of China(No.50874021 )the Program for New Century Excellent Talents in University(No.NCET-08-0833)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0656) of the Ministry of Education of China.
文摘Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.
基金supported by the National Natural Science Foundation of China(Grant Nos.41405083 and 91437220)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3098)+1 种基金the Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-DQC012)the Fund Project for The Education Department of Hunan Province(Grant No.16A234)
文摘The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data.
基金jointly supported by the National Key Research and Development Program of China[grant numbers 2018YFB0504900 and 2018YFB0504904]the National Natural Science Foundation of China[grant numbers 42071325,42171346,and 42176183]LIESMARS Special Research Funding,the‘985 Project’of Wuhan University,and Special funds of State Key Laboratory for equipment.
文摘Water color is a crucial optical indicator of water quality,polluted water bodies often show water color anomalies.To comprehensively understand the occurrence of water color anomalies in inland lakes,an integrated method was designed using the hue angle based on the Forel-Ule Index(FUI)model,and other remote sensing indices,including the Turbid Water Index(TWI),Floating Algae Index(FAI),and Cyanobacteria and Macrophytes Index(CMI).Based on all available Landsat-8 OLI images from 2013 to 2020,continuous monitoring was conducted in three different lakes in the middle of the Yangtze River,China.The results demonstrated that:(1)The proposed method can accurately identify algal blooms,high sediment loads,and eutrophication from the abnormal water color areas;(2)The calculated hue angles of sediment-dominated water were significantly higher than those of algal blooms and aquatic vegetation,providing a noticeable visual discoloration of water;(3)These water color anomalies exhibited significant correlations with the water quality and environmental conditions.This study serves as an example for accurate and spatially continuous assessment of water color anomaly and supports practical information to facilitate local water environment conservation.
文摘Long-term droughts significantly impact surface and groundwater resources in India,however,observed changes in major river basins have not been well explored.Here we use Standardized Precipitation Index(SPI)and Standardized Precipitation Evapotranspiration Index(SPEI)at three different time scales(24,48,and 60 months)to identify long-term droughts in India for the observed record of 1951-2015.Drought characteristics(extent,events,frequency,and intensity)are analyzed for different river basins in India.Increasing trend in the areal extent of droughts is observed in two methods with three time scales in the maximum area(63.66%)in India.We use the data from the Gravity Recovery and Climate Experiment(GRACE)to estimate the changes in the terrestrial water storage(TWS)during the period 2002-2015.We identify that major long-term droughts in India occurred from 1966 to 1969,1972,1986-1987,and 2002-2004.The all-India average TWS shows a negative trend from 2002 to 2015 with prominent decline in north Indian river basins and positive trend in south Indian river basins.SPI and SPEI at longer time scales are positively associated with TWS indicating the adverse impacts of droughts on surface and groundwater resources in such a populated region.
基金supported by the National Natural Science Foundation of China(Grant Nos.11290162/A040106,10974238,11274012,91021007and 11174006)the National Basic Research Program of China(GrantNo.2012CB921404)
文摘Water shows anomalies different from most of other materials.Different sceniaros have been proposed to explain water anomalies,among which the liquid-liquid phase transition(LLPT)is the most discussed one.It attributes water anomalies to the existence of a hypothesized liquid-liquid critical point(LLCP)buried deep in the supercooled region.We briefly review the recent experimental and theoretical progresses on the study of the LLPT in water.These studies include the discussion on the existence of the first order LLPT in supercooled water and the detection of liquid-liquid critical point.Simulational results of different water models for LLPT and the experimental evidence in confined water are also discussed.