Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water u...Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.展开更多
Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-K...Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period.展开更多
The Revised Universal Soil Loss Equation(RUSLE)is widely used to estimate regional soil erosion.However,quantitative impacts of soil and water conservation(SWC)measures on conservation practice factor(P)of the RUSLE r...The Revised Universal Soil Loss Equation(RUSLE)is widely used to estimate regional soil erosion.However,quantitative impacts of soil and water conservation(SWC)measures on conservation practice factor(P)of the RUSLE remain largely unclear,especially for the mountainous and hilly areas.In this study,we improved the RUSLE by considering quantitative impacts of different SWC measures on the P factor value.The improved RUSLE was validated against the long-term(2000-2015)soil erosion monitoring data obtained from 96 runoff plots(15—35°)in mountainous and hilly areas of Hubei Province,China;the result presented a high accuracy with the determination coefficient of 0.89.Based on the erosion monitoring data of 2018 and 2019,the Root Mean Square Error of the result by the improved RUSLE was 28.0%smaller than that by the original RUSLE with decrement of 19.6%—24.0%in the average P factor values,indicating that the soil erosion modelling accuracy was significantly enhanced by the improved RUSLE.Relatively low P factor values appeared for farmlands with tillage measures(P<0.53),grasslands with engineering measures(P<0.23),woodlands with biological measures(P<0.28),and other land use types with biological measures(P<0.51).The soil erosion modulus showed a downward trend with the corresponding values of 1681.21,1673.14,1594.70,1482.40 and 1437.50 t km^(-2)a-1 in 2000,2005,2010,2015 and 2019,respectively.The applicability of the improved RUSLE was verified by the measurements in typical mountainous and hilly areas of Hubei Province,China,and arrangements of SWC measures of this area were proposed.展开更多
基金The German Academic Exchange Service (DAAD) provided funding for the first authorThe German Federal Ministry of Education and Research (BMBF) provided funding for the second author through the “GLANCE” project (Global Change Effects on River Ecosystems, 01LN1320A)。
文摘Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.
文摘Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period.
基金funded by the Natural Science Foundation of China Project(41907061)the National Key Research and Development Program(2016YFC0503506)+1 种基金the Research Program from the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(A314021402-2005)the Research Center on Mountain Torrent&Geologic Disaster Prevention of the Ministry of Water Resources,Changjiang River Scientific Research Institute(CKWV2019761/KY).
文摘The Revised Universal Soil Loss Equation(RUSLE)is widely used to estimate regional soil erosion.However,quantitative impacts of soil and water conservation(SWC)measures on conservation practice factor(P)of the RUSLE remain largely unclear,especially for the mountainous and hilly areas.In this study,we improved the RUSLE by considering quantitative impacts of different SWC measures on the P factor value.The improved RUSLE was validated against the long-term(2000-2015)soil erosion monitoring data obtained from 96 runoff plots(15—35°)in mountainous and hilly areas of Hubei Province,China;the result presented a high accuracy with the determination coefficient of 0.89.Based on the erosion monitoring data of 2018 and 2019,the Root Mean Square Error of the result by the improved RUSLE was 28.0%smaller than that by the original RUSLE with decrement of 19.6%—24.0%in the average P factor values,indicating that the soil erosion modelling accuracy was significantly enhanced by the improved RUSLE.Relatively low P factor values appeared for farmlands with tillage measures(P<0.53),grasslands with engineering measures(P<0.23),woodlands with biological measures(P<0.28),and other land use types with biological measures(P<0.51).The soil erosion modulus showed a downward trend with the corresponding values of 1681.21,1673.14,1594.70,1482.40 and 1437.50 t km^(-2)a-1 in 2000,2005,2010,2015 and 2019,respectively.The applicability of the improved RUSLE was verified by the measurements in typical mountainous and hilly areas of Hubei Province,China,and arrangements of SWC measures of this area were proposed.