期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Corrosion of candidate materials for supercritical water-cooled reactor
1
作者 ZHANG Lefu~(1)),BAO Yichen~(1)) and TANG Rui~(2)) 1) School of Nuclear Sci.&Eng,Shanghai Jiao Tong Univ.,Shanghai 200240,China 2) National Key Laboratory for Nuclear Fuel and Materials,Nuclear Power Institute of China,Chengdu 610041,China 《Baosteel Technical Research》 CAS 2010年第S1期71-,共1页
Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages... Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages of 10%higher efficiency,simpler system design,better sustainability,and so on. However,the selection of materials for fuel cladding and reactor internals of SCWR is facing a great challenge. Corrosion in supercritical steam is of the first important issue to be solved to meet the stringent requirement of the reactor internal components.Corrosion screening tests were conducted on candidate materials for nuclear fuel cladding and reactor internals of supercritical water reactor(SCWR) in static and re-circulating autoclave at the temperatures of 550,600 and 650℃,pressure of about 25 MPa,deaerated or saturated dissolved hydrogen(STP). Nickel base alloy type Hastelloy C276,austenitic stainless steels type 304NG,AL-6XN,HR3C.NF709 and SAVE 25,ferritic/martensitic(F/M) steel type P92,P122 and 410,and oxide dispersion strengthened steel MA 956,are tested.This paper presents corrosion rate,and focuses on the formation and breakdown of corrosion oxide film,and proposes the future trend for the development of SCWR internal structure materials. 展开更多
关键词 supercritical water cooled reactor cladding material CORROSION protective oxide film
下载PDF
An old issue and a new challenge for nuclear reactor safety
2
作者 F.D’AURIA 《Frontiers in Energy》 SCIE CSCD 2021年第4期854-859,共6页
Nuclear reactor safety(NRS)and the branch accident analysis(AA)constitute proven technologies:these are based on,among the other things,long lasting research and operational experience in the area of water cooled nucl... Nuclear reactor safety(NRS)and the branch accident analysis(AA)constitute proven technologies:these are based on,among the other things,long lasting research and operational experience in the area of water cooled nuclear reactors(WCNR).Large break loss of coolant accident(LBLOCA)has been,so far,the orienting scenario within AA and a basis for the design of reactors.An incomplete vision for those technologies during the last few years is as follows:Progress in fundamentals was stagnant,namely in those countries where the WCNR were designed.Weaknesses became evident,noticeably in relation to nuclear fuel under high burn-up.Best estimate plus uncertainty(BEPU)techniques were perfected and available for application.Electronic and informatics systems were in extensive use and their impact in case of accident becomes more and more un-checked(however,quite irrelevant in case of LBLOCA).The time delay between technological discoveries and applications was becoming longer.The present paper deals with the LBLOCA that is inserted into the above context.Key conclusion is that regulations need suitable modification,rather than lowering the importance and the role of LBLOCA.Moreover,strengths of emergency core cooling system(ECCS)and containment need a tight link. 展开更多
关键词 large break loss of coolant accident(LBLOCA) nuclear reactor safety(NRS) licensing perspectives basis for design of water cooled nuclear reactors(WCNR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部