Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and wa...Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.展开更多
The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake T...The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.展开更多
The impacts of changes of various parameters and stochastic factors on water quality models were studied. The impact of deviation of the degradation coefficient on the model results was investigated. The degradation c...The impacts of changes of various parameters and stochastic factors on water quality models were studied. The impact of deviation of the degradation coefficient on the model results was investigated. The degradation coefficient was decomposed into the exact part and the deviation part, and the relationship between the errors of the water quality model results and the deviation of the degradation coefficient was derived. The impact of changes in the initial concentration on the model results was discussed. A linear relationship between the initial concentration changes and errors in the model results was obtained, and relevant recommendations to the water quality management were made based on the results. The impacts of stochastic factors in the water environment on the water quality model were analyzed. A variety of random factors which may affect the water quality conditions were attributed to one stochastic factor and it was further assumed to be the white noise. The solutions to the water quality model including the stochastic process were obtained by solving the stochastic differential equation. Simulation results showed that the decay trend of the concentration of the solute would not be changed, and that the results would fluctuate around the expectation centered at each corresponding displacement展开更多
Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well a...Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.展开更多
Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing ...In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.展开更多
Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collec...Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 ...Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.展开更多
Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region o...Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.展开更多
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet...As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.展开更多
The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined u...The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.展开更多
Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasi...Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country.展开更多
Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments re...Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.展开更多
The sampling of environmental water should ensure the representativeness and integrity of the sampled water body,which has an important impact on the monitoring results.The sampling of different water bodies sampling ...The sampling of environmental water should ensure the representativeness and integrity of the sampled water body,which has an important impact on the monitoring results.The sampling of different water bodies sampling will result in different monitoring results.Based on the study on the problems and influencing factors in the sampling process of environmental water quality,improvement measures during the sampling process were elaborated in the paper,with the aim to strengthen on-site control of water sampling,and reduce adverse effects on monitoring results.展开更多
Based on the water quality monitoring data of 5 large reservoirs in Ji’an City,Jiangxi Province from 2015-2021,the temporal and spatial variation characteristics and trends of water quality of the reservoirs were ana...Based on the water quality monitoring data of 5 large reservoirs in Ji’an City,Jiangxi Province from 2015-2021,the temporal and spatial variation characteristics and trends of water quality of the reservoirs were analyzed by single-factor evaluation method and seasonal Kendall test to evaluate the trophic status of the reservoirs and explore the influencing factors of characteristic pollutants.The results showed that:①the water quality of the reservoirs was good and could meet the water needs of various functions;②the water quality of the reservoirs had generally changed from bad to good in recent years,indicating that the implementation of“river chief system”has achieved certain results;③Kendall test analysis showed that,except for individual projects which showed an upward trend in water quality,other projects showed no obvious change trend or downward trend,indicating that the water quality of the reservoirs is indeed improving;④the causes of water pollution in reservoir area were further analyzed by exploring the natural and human factors of the characteristic pollutant total phosphorus.It is recommended to strengthen supervision in the later stage to control point and non-point source pollution.展开更多
Under the vision of development for the new era,China has entered a stage of high-quality economic development and an important window period in which we have the conditions and ability to address the prominent issue ...Under the vision of development for the new era,China has entered a stage of high-quality economic development and an important window period in which we have the conditions and ability to address the prominent issue of economic development and ecological protection in a coordinated way.However,all kinds of environmental benchmark values in China are lacking and need to be constantly supplemented and improved.Therefore,exploring and putting forward a simple and efficient method for the transformation of environmental criteria into environmental standards is an important basis for the rapid establishment of relevant environmental criteria system and the effective promotion of the development of environmental standards system towards a scientific and reasonable direction.In this paper,the water environment is taken as the research object.By analyzing the research progress of environmental criteria and standards at home and abroad,and the foreign method of transforming environmental criteria into environmental standards,combined with the problems faced in the process of transforming environmental criteria into environmental standards in China,an effective method to transform China's environmental criteria into environmental standards is analyzed.After analysis and comparison,it is found that the pollution reduction accounting method could achieve their simple and efficient conversion.Under the premise of obtaining environmental criteria for certain pollutants,environmental criteria for certain pollutants could be obtained by distributing pollutants reduction costs,and accounting economic benefits after reaching standard,thus obtaining the environmental standard of this type of pollutant,which provides reference to determine the environmental standard limits of such pollutants.展开更多
At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the p...At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality.展开更多
[Objectives]To analyze the influence characteristics of surface water quality by agricultural non-point sources in Guigang City of Guangxi.[Methods]The daily concentration series of water quality indicators at three s...[Objectives]To analyze the influence characteristics of surface water quality by agricultural non-point sources in Guigang City of Guangxi.[Methods]The daily concentration series of water quality indicators at three state-controlled monitoring stations in Guigang City from^(2)019 to 2021 was analyzed by using Daubechies(db)wavelet,and Morlet wavelet was used to analyze the daily average concentration of water quality indicators.Continuous wavelet transform(CWT)was used to analyze the monthly concentration series of water quality indicators at three state-controlled monitoring stations in Guigang City from^(2)014 to 2021.[Results]The Daubechies(db)wavelet analysis showed that the concentrations of COD_(Mn),TP,and TN had the maximum values during June-July and October-November,and there were spatial differences among monitoring stations(COD_(Mn) concentration exceeding the standard was the most serious in Shizui,and DO concentration not up to standard was the most in Thermal Power Plant,and NH_(3)-N,TP and TN exceeding the standard was the most in Wulin Ferry).Morlet results showed that principal period of wavelet variance graphs of COD_(Mn),NH_(3)-N,and TP was 340 d,and there was the same sub-period of 140 d,and principal period of wavelet variance graph of DO was 260 d.CWT results showed that COD_(Cr) had similar resonance periods of about 1-2 and 5-7 months;BOD 5 and COD_(Mn) was dominant by the resonance period of 1-4 months(2014-2017);DO had a similar resonance period of about 1-3 months;NH_(3)-N was dominant by the resonance period of 1-5 months.[Conclusions]The surface water quality of Guigang City was mainly affected by the residual nitrogen and phosphorus nutrients and pesticide residues from agricultural production activities.展开更多
Water resources are an indispensable and valuable resource for human survival and development.Water quality predicting plays an important role in the protection and development of water resources.It is difficult to pr...Water resources are an indispensable and valuable resource for human survival and development.Water quality predicting plays an important role in the protection and development of water resources.It is difficult to predictwater quality due to its random and trend changes.Therefore,amethod of predicting water quality which combines Auto Regressive Integrated Moving Average(ARIMA)and clusteringmodelwas proposed in this paper.By taking thewater qualitymonitoring data of a certain river basin as a sample,thewater quality Total Phosphorus(TP)index was selected as the prediction object.Firstly,the sample data was cleaned,stationary analyzed,and white noise analyzed.Secondly,the appropriate parameters were selected according to the Bayesian Information Criterion(BIC)principle,and the trend component characteristics were obtained by using ARIMA to conduct water quality predicting.Thirdly,the relationship between the precipitation and the TP index in themonitoring water field was analyzed by the K-means clusteringmethod,and the random incremental characteristics of precipitation on water quality changes were calculated.Finally,by combining with the trend component characteristics and the random incremental characteristics,the water quality prediction results were calculated.Compared with the ARIMA water quality prediction method,experiments showed that the proposed method has higher accuracy,and its Mean Absolute Error(MAE),Mean Square Error(MSE),and Mean Absolute Percentage Error(MAPE)were respectively reduced by 44.6%,56.8%,and 45.8%.展开更多
文摘Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.
文摘The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.
文摘The impacts of changes of various parameters and stochastic factors on water quality models were studied. The impact of deviation of the degradation coefficient on the model results was investigated. The degradation coefficient was decomposed into the exact part and the deviation part, and the relationship between the errors of the water quality model results and the deviation of the degradation coefficient was derived. The impact of changes in the initial concentration on the model results was discussed. A linear relationship between the initial concentration changes and errors in the model results was obtained, and relevant recommendations to the water quality management were made based on the results. The impacts of stochastic factors in the water environment on the water quality model were analyzed. A variety of random factors which may affect the water quality conditions were attributed to one stochastic factor and it was further assumed to be the white noise. The solutions to the water quality model including the stochastic process were obtained by solving the stochastic differential equation. Simulation results showed that the decay trend of the concentration of the solute would not be changed, and that the results would fluctuate around the expectation centered at each corresponding displacement
基金funding from the European Union’s Horizon 2020 Research&Innovation Programme(2211)under the Partnership for Research and Innovation in the Mediterranean Area(PRIMA)Project"SHARInG-MeD"from the Directorate-General for Scientific Research and Technological Development(DGRSDT)under the Projets de Recherche Formation-Universitaire(PRFU)Projects(D00L02UN120120230002,D01N01UN120120230005)。
文摘Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
基金financial support from the Government of the Perm Territory within the Framework of Scientific Project No.S-26/828the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.
基金supported by Center for Resiliency(CfR)at Lamar University(Grant No.22PSSO1).
文摘Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
文摘Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.
文摘Dump sites pose a significant threat to groundwater resources due to the possibility of leachate leakage into the aquifer.This study investigated the impact of leachate on groundwater quality in the southwest region of Zanjan City,Iran,where groundwater is utilized for drinking,agricultural,and industrial purposes.We analyzed 18 parameters of dump site leachate,including physicochemical,heavy metals,and bacterial properties,alongside 13 groundwater samples.Sampling was conducted twice,in November 2020 and June 2021,within a five-kilometer radius of the Zanjan dump site.We utilized the Leachate Pollution Index(LPI)to evaluate potential groundwater contamination by leachate leakage from nearby dumpsite.Additionally,due to the predominant agricultural activities in the study area,various indices were employed to assess groundwater quality for agricultural purposes,such as Sodium Adsorption Ratio(SAR),Soluble Sodium Index(SSI),Kelly Ratio(KR),and Permeability Index(PI).Our analysis revealed no observed contamination related to leachate in the study area according to the LPI results.However,with the persistent pollution threat,implementing sanitary measures at the dump site is crucial to prevent potential impacts on groundwater quality.Moreover,the assessment of groundwater quality adequacy for irrigation yielded satisfactory results for SAR,KR,and PI indices.However,during both the dry(November 2020)and wet seasons(June 2021),the SSP index indicated that 80%of the samples were not classified as excellent,suggesting groundwater may not be suitable for agriculture.Overal,our qualitative study highlights the significant impact of the dry season on groundwater quality in the study area,attributed to elevated concentration levels of the investigated parameters within groundwater sources during the dry season.
文摘As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.
文摘The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.
文摘Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country.
文摘Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.
文摘The sampling of environmental water should ensure the representativeness and integrity of the sampled water body,which has an important impact on the monitoring results.The sampling of different water bodies sampling will result in different monitoring results.Based on the study on the problems and influencing factors in the sampling process of environmental water quality,improvement measures during the sampling process were elaborated in the paper,with the aim to strengthen on-site control of water sampling,and reduce adverse effects on monitoring results.
基金Hydraulic Science and Technology Project of Water Resources Department of Jiangxi Province(202324YBKT14)Youth Science and Technology Innovation Fund of Jiangxi Hydrology Monitoring Center(SWJJKT202208).
文摘Based on the water quality monitoring data of 5 large reservoirs in Ji’an City,Jiangxi Province from 2015-2021,the temporal and spatial variation characteristics and trends of water quality of the reservoirs were analyzed by single-factor evaluation method and seasonal Kendall test to evaluate the trophic status of the reservoirs and explore the influencing factors of characteristic pollutants.The results showed that:①the water quality of the reservoirs was good and could meet the water needs of various functions;②the water quality of the reservoirs had generally changed from bad to good in recent years,indicating that the implementation of“river chief system”has achieved certain results;③Kendall test analysis showed that,except for individual projects which showed an upward trend in water quality,other projects showed no obvious change trend or downward trend,indicating that the water quality of the reservoirs is indeed improving;④the causes of water pollution in reservoir area were further analyzed by exploring the natural and human factors of the characteristic pollutant total phosphorus.It is recommended to strengthen supervision in the later stage to control point and non-point source pollution.
基金Supported by Research on Water Quality Criteria for Aquatic Organism Protection and Water Quality Standards for Optimal Control of Pollutants in the Baiyangdian Basin(20374204D).
文摘Under the vision of development for the new era,China has entered a stage of high-quality economic development and an important window period in which we have the conditions and ability to address the prominent issue of economic development and ecological protection in a coordinated way.However,all kinds of environmental benchmark values in China are lacking and need to be constantly supplemented and improved.Therefore,exploring and putting forward a simple and efficient method for the transformation of environmental criteria into environmental standards is an important basis for the rapid establishment of relevant environmental criteria system and the effective promotion of the development of environmental standards system towards a scientific and reasonable direction.In this paper,the water environment is taken as the research object.By analyzing the research progress of environmental criteria and standards at home and abroad,and the foreign method of transforming environmental criteria into environmental standards,combined with the problems faced in the process of transforming environmental criteria into environmental standards in China,an effective method to transform China's environmental criteria into environmental standards is analyzed.After analysis and comparison,it is found that the pollution reduction accounting method could achieve their simple and efficient conversion.Under the premise of obtaining environmental criteria for certain pollutants,environmental criteria for certain pollutants could be obtained by distributing pollutants reduction costs,and accounting economic benefits after reaching standard,thus obtaining the environmental standard of this type of pollutant,which provides reference to determine the environmental standard limits of such pollutants.
基金the National Natural Science Foundation of China(No.51775185)Natural Science Foundation of Hunan Province(No.2022JJ90013)+1 种基金Intelligent Environmental Monitoring Technology Hunan Provincial Joint Training Base for Graduate Students in the Integration of Industry and Education,and Hunan Normal University University-Industry Cooperation.the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open Project,Grant Number 20181901CRP04.
文摘At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality.
基金Supported by Basic Scientific Research Ability Improvement Project of Young and Middle-aged Teachers in Guangxi Colleges and Universities in 2021(2021KY1970).
文摘[Objectives]To analyze the influence characteristics of surface water quality by agricultural non-point sources in Guigang City of Guangxi.[Methods]The daily concentration series of water quality indicators at three state-controlled monitoring stations in Guigang City from^(2)019 to 2021 was analyzed by using Daubechies(db)wavelet,and Morlet wavelet was used to analyze the daily average concentration of water quality indicators.Continuous wavelet transform(CWT)was used to analyze the monthly concentration series of water quality indicators at three state-controlled monitoring stations in Guigang City from^(2)014 to 2021.[Results]The Daubechies(db)wavelet analysis showed that the concentrations of COD_(Mn),TP,and TN had the maximum values during June-July and October-November,and there were spatial differences among monitoring stations(COD_(Mn) concentration exceeding the standard was the most serious in Shizui,and DO concentration not up to standard was the most in Thermal Power Plant,and NH_(3)-N,TP and TN exceeding the standard was the most in Wulin Ferry).Morlet results showed that principal period of wavelet variance graphs of COD_(Mn),NH_(3)-N,and TP was 340 d,and there was the same sub-period of 140 d,and principal period of wavelet variance graph of DO was 260 d.CWT results showed that COD_(Cr) had similar resonance periods of about 1-2 and 5-7 months;BOD 5 and COD_(Mn) was dominant by the resonance period of 1-4 months(2014-2017);DO had a similar resonance period of about 1-3 months;NH_(3)-N was dominant by the resonance period of 1-5 months.[Conclusions]The surface water quality of Guigang City was mainly affected by the residual nitrogen and phosphorus nutrients and pesticide residues from agricultural production activities.
基金funded by the National Natural Science Foundation of China(No.51775185),Natural Science Foundation of Hunan Province(2022JJ90013)Scientific Research Fund of Hunan Province Education Department(18C0003)+1 种基金Research project on teaching reform in colleges and universities of Hunan Province Education Department(20190147)Hunan Normal University University-Industry Cooperation.This work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open project,Grant Number 20181901CRP04.
文摘Water resources are an indispensable and valuable resource for human survival and development.Water quality predicting plays an important role in the protection and development of water resources.It is difficult to predictwater quality due to its random and trend changes.Therefore,amethod of predicting water quality which combines Auto Regressive Integrated Moving Average(ARIMA)and clusteringmodelwas proposed in this paper.By taking thewater qualitymonitoring data of a certain river basin as a sample,thewater quality Total Phosphorus(TP)index was selected as the prediction object.Firstly,the sample data was cleaned,stationary analyzed,and white noise analyzed.Secondly,the appropriate parameters were selected according to the Bayesian Information Criterion(BIC)principle,and the trend component characteristics were obtained by using ARIMA to conduct water quality predicting.Thirdly,the relationship between the precipitation and the TP index in themonitoring water field was analyzed by the K-means clusteringmethod,and the random incremental characteristics of precipitation on water quality changes were calculated.Finally,by combining with the trend component characteristics and the random incremental characteristics,the water quality prediction results were calculated.Compared with the ARIMA water quality prediction method,experiments showed that the proposed method has higher accuracy,and its Mean Absolute Error(MAE),Mean Square Error(MSE),and Mean Absolute Percentage Error(MAPE)were respectively reduced by 44.6%,56.8%,and 45.8%.