The shortage of water resources is severe in Beijing. The shortage of eco-environmental water and the sewage discharge over the environmental capacity are main bottlenecks that restrict the improvement of water enviro...The shortage of water resources is severe in Beijing. The shortage of eco-environmental water and the sewage discharge over the environmental capacity are main bottlenecks that restrict the improvement of water environment. The reuse of wastewater could not only reduce the discharge of pollutants,but it could also increase the consumption of eco-environmental water. Therefore the reuse of wastewater is an important approach to improve the water environmental quality. Combined with the formulation process of Regulations of Beijing on Prevention and Control of Water Pollution,the current situations of prevention and control of water pollution in Beijing,the discharge of pollutant,water environmental quality,the population and economic development and water resources and so on were analyzed. And the bottlenecks that restricted the improvement of water environmental quality were found. And the necessity of solving the control of water pollution by reusing the wastewater and ensuring the consumption of eco-environmental water was analyzed from the perspective of the control of water pollution. And some legislative countermeasures were put forward,which provided new ideas for solving the problem of the prevention and control of water pollution and improving the water environmental quality. It was of important reference values for local governments( especially water-deficient regions) to make relative polices or plans of water pollution control and water environmental protection.展开更多
The present water pollution situation at watershed level in China has been systematically analyzed.The causes of water pollution are attributed to the extensive economic developmental pattern,poor wastewater treatment...The present water pollution situation at watershed level in China has been systematically analyzed.The causes of water pollution are attributed to the extensive economic developmental pattern,poor wastewater treatment,and a lack of nonpoint pollution control.The problems of water pollution control at watershed level include a lack of thought and approach,developmental delay in the environmental standard system,an inadequate monitoring ability,and an inefficient implementation of laws and regulations.From 2006 to 2020,water pollution control and governance will be a national key specific project of science and technology in China.The strategies of this project include establishing a water pollution control system at watershed level,orienting a healthy aquatic ecosystem,conducting risk management,and using comprehensive methods.The goal is to establish and complete a technological system of pollution control and management in three five-year phases.The main tasks are to develop common technologies,management systems,and mechanisms for lake eutrophication control,river pollution control,urban water environmental pollution control,potable water safety,and water environmental management.The bottlenecks of water pollution control and management in China could be systematically removed,and the demonstration of the system engineering approach will be conducted at selected key watersheds.展开更多
The Tai and Chao Lake basins are currently facing a serious water pollution crisis associated with the absence of an effective environmental governance system. The water pollution and the water governance system of th...The Tai and Chao Lake basins are currently facing a serious water pollution crisis associated with the absence of an effective environmental governance system. The water pollution and the water governance system of the two basins will be compared. The reasons for water pollution in both basins are similar, namely the weak current water environmental governance system cannot deal with the consequences of the rapidly growing economy. China’s water governance system is a complicated combination of basin management with both departmental management and regional management. There is an absence of legal support and sound coordination mechanisms, resulting in fragmented management practices in the existing water environmental governance system. A comparison is made for the Tai and Chao Lake basins and Canada, France, the United Kingdom and the United States. Based on China’s present central-local governance structure and departmental system, an integrated reform of basin level and water environmental governance in China should learn from international experiences. The reforms could consist of improved governance structures, rebuilding authoritative and powerful agencies for basin management, strengthening the organizational structure of the basin administrations, improving legislation and regulatory systems for basin management and enhancing public participation mechanisms.展开更多
Water resource shortage and pollution has seriously threatened the survival and development of developing countries.Because of China’s specific economical and social circumstances,complete adoption of developed count...Water resource shortage and pollution has seriously threatened the survival and development of developing countries.Because of China’s specific economical and social circumstances,complete adoption of developed countries’experience is unrealistic.At present,China needs to develop strategies and technologies in source water pollution control and municipal environmental remediation that embrace the country’s specific need to battle the water resource problem.Among them,efficient source water pretreatment is a critical step to ensure a safe municipal water supply.Unlike developed countries,it is not yet feasible in China to treat water supplied to the household and have it meet the standard of direct drinking;therefore,it is more appropriate to refer to it as service water.As a beneficial supplement,an additional community drinking water network and household drinking water apparatus can be considered.展开更多
On the background of analysis on region water environment safety in the Dongjiang Lake of south-central China, the source of pollution of water environment and its control are studied. The concept of region environmen...On the background of analysis on region water environment safety in the Dongjiang Lake of south-central China, the source of pollution of water environment and its control are studied. The concept of region environment disaster chain is put forward on the basis of combination study on the disaster chain theory and pollution problem in regional water environment. Through identification and analysis of pollution disaster resources in regional water environment of the Dongjiang Lake, the annual emission of the chemical oxygen demand (COD), ammonia nitrogen, total phosphorus (TP) and heavy metal (Cd, As, Pb) are counted. According to evaluation on structure proportion of contaminants in the Dongjiang Lake, agricultural non-point source is the uppermost pollution source, which accounted for 87.74% in total pollution load. Ammonia nitrogen, TP and COD are mainly contaminants accounted for 94.27% in total pollution load. By analyzing danger of contaminants in the lake, basic form of disaster chain of water environment pollution is built elementarily. It shows characteristics of branches and trunk basin disaster chain and embodies multisource disaster implication chain caused by human activities. Then, disaster resources chain-cutting methods for pollution prevention and control of regional water environment of the Dongjiang Lake are analyzed.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
文摘The shortage of water resources is severe in Beijing. The shortage of eco-environmental water and the sewage discharge over the environmental capacity are main bottlenecks that restrict the improvement of water environment. The reuse of wastewater could not only reduce the discharge of pollutants,but it could also increase the consumption of eco-environmental water. Therefore the reuse of wastewater is an important approach to improve the water environmental quality. Combined with the formulation process of Regulations of Beijing on Prevention and Control of Water Pollution,the current situations of prevention and control of water pollution in Beijing,the discharge of pollutant,water environmental quality,the population and economic development and water resources and so on were analyzed. And the bottlenecks that restricted the improvement of water environmental quality were found. And the necessity of solving the control of water pollution by reusing the wastewater and ensuring the consumption of eco-environmental water was analyzed from the perspective of the control of water pollution. And some legislative countermeasures were put forward,which provided new ideas for solving the problem of the prevention and control of water pollution and improving the water environmental quality. It was of important reference values for local governments( especially water-deficient regions) to make relative polices or plans of water pollution control and water environmental protection.
基金the project of the National Key Specific Project of Science and Technology of China for“Water Pollution Control and Governance,”“Functional zoning of river basin water ecology and water quality target oriented management technology”(Grant No.2008ZX07526).
文摘The present water pollution situation at watershed level in China has been systematically analyzed.The causes of water pollution are attributed to the extensive economic developmental pattern,poor wastewater treatment,and a lack of nonpoint pollution control.The problems of water pollution control at watershed level include a lack of thought and approach,developmental delay in the environmental standard system,an inadequate monitoring ability,and an inefficient implementation of laws and regulations.From 2006 to 2020,water pollution control and governance will be a national key specific project of science and technology in China.The strategies of this project include establishing a water pollution control system at watershed level,orienting a healthy aquatic ecosystem,conducting risk management,and using comprehensive methods.The goal is to establish and complete a technological system of pollution control and management in three five-year phases.The main tasks are to develop common technologies,management systems,and mechanisms for lake eutrophication control,river pollution control,urban water environmental pollution control,potable water safety,and water environmental management.The bottlenecks of water pollution control and management in China could be systematically removed,and the demonstration of the system engineering approach will be conducted at selected key watersheds.
文摘The Tai and Chao Lake basins are currently facing a serious water pollution crisis associated with the absence of an effective environmental governance system. The water pollution and the water governance system of the two basins will be compared. The reasons for water pollution in both basins are similar, namely the weak current water environmental governance system cannot deal with the consequences of the rapidly growing economy. China’s water governance system is a complicated combination of basin management with both departmental management and regional management. There is an absence of legal support and sound coordination mechanisms, resulting in fragmented management practices in the existing water environmental governance system. A comparison is made for the Tai and Chao Lake basins and Canada, France, the United Kingdom and the United States. Based on China’s present central-local governance structure and departmental system, an integrated reform of basin level and water environmental governance in China should learn from international experiences. The reforms could consist of improved governance structures, rebuilding authoritative and powerful agencies for basin management, strengthening the organizational structure of the basin administrations, improving legislation and regulatory systems for basin management and enhancing public participation mechanisms.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50678118)the Key Cooperation Program of MOST(Grant No.2006DFA92690 and No.2007DFB90280).
文摘Water resource shortage and pollution has seriously threatened the survival and development of developing countries.Because of China’s specific economical and social circumstances,complete adoption of developed countries’experience is unrealistic.At present,China needs to develop strategies and technologies in source water pollution control and municipal environmental remediation that embrace the country’s specific need to battle the water resource problem.Among them,efficient source water pretreatment is a critical step to ensure a safe municipal water supply.Unlike developed countries,it is not yet feasible in China to treat water supplied to the household and have it meet the standard of direct drinking;therefore,it is more appropriate to refer to it as service water.As a beneficial supplement,an additional community drinking water network and household drinking water apparatus can be considered.
文摘On the background of analysis on region water environment safety in the Dongjiang Lake of south-central China, the source of pollution of water environment and its control are studied. The concept of region environment disaster chain is put forward on the basis of combination study on the disaster chain theory and pollution problem in regional water environment. Through identification and analysis of pollution disaster resources in regional water environment of the Dongjiang Lake, the annual emission of the chemical oxygen demand (COD), ammonia nitrogen, total phosphorus (TP) and heavy metal (Cd, As, Pb) are counted. According to evaluation on structure proportion of contaminants in the Dongjiang Lake, agricultural non-point source is the uppermost pollution source, which accounted for 87.74% in total pollution load. Ammonia nitrogen, TP and COD are mainly contaminants accounted for 94.27% in total pollution load. By analyzing danger of contaminants in the lake, basic form of disaster chain of water environment pollution is built elementarily. It shows characteristics of branches and trunk basin disaster chain and embodies multisource disaster implication chain caused by human activities. Then, disaster resources chain-cutting methods for pollution prevention and control of regional water environment of the Dongjiang Lake are analyzed.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.