期刊文献+
共找到2,345篇文章
< 1 2 118 >
每页显示 20 50 100
Harnessing overlapped temperature-salinity gradient in solar-driven interfacial seawater evaporation for efficient steam and electricity generation
1
作者 Peida Li Dongtong He +2 位作者 Jingchang Sun Jieshan Qiu Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期694-700,I0015,共8页
Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad... Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold. 展开更多
关键词 Solar-driven interfacial water evaporation Steam generation Electricity generation Seawater
下载PDF
Recentadvancesincarbon‐basedmaterials for solar‐driven interfacial photothermal conversion water evaporation:Assemblies,structures,applications,and prospective 被引量:5
2
作者 Yanmin Li Yanying Shi +4 位作者 Haiwen Wang Tiefeng Liu Xiuwen Zheng Shanmin Gao Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期101-142,共42页
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la... The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology. 展开更多
关键词 APPLICATIONS carbon‐based materials EVAPORATOR photothermal conversion water evaporation
下载PDF
WATER EVAPORATION ENVIRONMENT IN TAIHU LAKE REGION
3
作者 毛锐 高俊峰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1995年第3期233-239,共7页
To the Taihu region water evaporation environmt of water surface with plants, intruded salt watersurface, shallow water surface in rice fields etc., polluted water surface and hot water surface havenow been added in r... To the Taihu region water evaporation environmt of water surface with plants, intruded salt watersurface, shallow water surface in rice fields etc., polluted water surface and hot water surface havenow been added in recent years, as a result of economic development. This study on the regularitiesof evaporation from all the above water surfaces showed that evaporation will increase from some surfaces, but from the others. 展开更多
关键词 water evaporation water environment evaporation ratio
下载PDF
Simulation-Guided Design of Bamboo Leaf-Derived Carbon-Based High-Efficiency Evaporator for Solar-Driven Interface Water Evaporation 被引量:3
4
作者 Yitian Wu Rui Kong +8 位作者 Chaoliang Ma Lanze Li Yu Zheng Yingzhuo Lu Lulu Liang Yajun Pang Qiang Wu Zhehong Shen Hao Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1323-1331,共9页
Solar interface water evaporation has been demonstrated to be an advanced method for freshwater production with high solar energy utilization.The development of evaporators with lower cost and higher efficiency is a k... Solar interface water evaporation has been demonstrated to be an advanced method for freshwater production with high solar energy utilization.The development of evaporators with lower cost and higher efficiency is a key challenge in the manufacture of practical solar interface water evaporation devices.Herein,a bamboo leaf-derived carbon-based evaporator is designed based on the light trace simulation.And then,it is manufactured by vertical arrangement and carbonization of bamboo leaves and subsequent polyacrylamide modification.The vertically arranged carbon structure can extend the light path and increase the light-absorbing area,thus achieving excellent light absorption.Furthermore,the continuous distribution of polyacrylamide hydrogel between these vertical carbons can support high-speed water delivery and shorten the evaporation path.Therefore,this evaporator exhibits an ultrahigh average light absorption rate of~96.1%,a good water evaporation rate of 1.75 kg m^(-2) h^(-1),and an excellent solar-to-vapor efficiency of 91.9%under one sun irradiation.Furthermore,the device based on this evaporator can effectively achieve seawater desalination,heavy metal ion removal,and dye separation while completing water evaporation.And this device is highly available for actual outdoor applications and repeated recycling. 展开更多
关键词 bamboo leaf carbon materials DESALINATION waste water treatment water evaporation
下载PDF
A Simulation Study on Effect of Surface Film-Forming Material on Water Evaporation 被引量:4
5
作者 ZHUANG SHUNYAO, YIN BIN and ZHU ZHAOLIANG (Institute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008 (China)) 《Pedosphere》 SCIE CAS CSCD 2001年第1期67-72,共6页
A greenhouse experiment was conducted to investigate the effect of surface film-forming material(SFFM),a mixture of 16-18-octadecanols by emulsification,on water evaporation,Air-dired soil with distilled water was inc... A greenhouse experiment was conducted to investigate the effect of surface film-forming material(SFFM),a mixture of 16-18-octadecanols by emulsification,on water evaporation,Air-dired soil with distilled water was incubated firstly for 7days to reestablish soil biological activity and then for another 7 days atfer treated with SFFM at rates of 0,1,2,4,6,8 and 8 g m^-2,respectively,Everyday during the 7-day incubation after addition of SFFM,water losses due to evaporation were measured by an electronic balance.The rate of water evaporation with the addition of SFFM was reduced significantly compared with the control treatment and the effectiveness of SFFM on water evaporation reduced with time.According to the equation expressions of the effect of SFFM on water evaporation ,the half-life of effectiveness of SFFM on water evaporation was introduced and calculated to analyze quantitative relationship between the effectiveness of SFFM on water evaporation and the addition rate of SFFM.The calculaed half-life increased with the addition rate of SFFM and the confidence of the calculated values of the half-life was high,suggesting that the half-life of effectiveness of SFFM on water evaporation could be described quantitaively and may be helpful for ameliorating application method of SFFM and screening surface-film forming materials in order to improve nitrogen fetilizer use efficiency in floodey rice fields. 展开更多
关键词 半衰期 氨气 空气 表面覆盖物 温室 蒸发
下载PDF
Composite laminar membranes for electricity generation from water evaporation
6
作者 Xiao Wang Gang Yuan +5 位作者 Han Zhou Yu Jiang Shuo Wang Jiaojiao Ma Chongyang Yang Sheng Hu 《Nano Research》 SCIE EI CSCD 2024年第1期307-311,共5页
Harvesting clean energy from water evaporation has been extensively investigated due to its sustainability.To achieve high efficiency,energy conversion materials should contain multiple features which are difficult to... Harvesting clean energy from water evaporation has been extensively investigated due to its sustainability.To achieve high efficiency,energy conversion materials should contain multiple features which are difficult to be simultaneously obtained from single-component materials.Here we use composite laminar membranes assembled by nanosheets of graphene oxide and mica,and find a sustained power density induced by water evaporation that is two orders of magnitude larger than that from membranes made by either of the components.The power output is attributed to selective proton transport driven by water evaporation through the interlayer nanochannels in the membranes.This process relies on the synergistic effects from negatively charged and hydrophilic mica surfaces that are important for proton selectivity and water transport,and the tunable electrical conductivity of graphene oxide that provides optimized internal resistance.The demonstrated composite membranes offer a strategy of enhancing power generation by combining the advantages from each of their components. 展开更多
关键词 graphene oxide MICA water evaporation electrical double layer surface charge ion selectivity
原文传递
Constructing core@shell structured photothermal nanosphere with thin carbon layer confined Co-Mn bimetals for pollutant degradation and solar interfacial water evaporation
7
作者 Hong-Yang Zhu Meng-Ting Liu +9 位作者 Gang Wang Rong-Rong Du Hong-Yao Zhao Hao Lu Shi-Qi Yang Sheng Tang Zeng-Jing Guo Jun Yang Cheng-Zhang Zhu Fu Yang 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1686-1701,共16页
Photothermal material applied in environmental governance has attracted growing attention.By combining the Stober method and dopamine-triggered coating strategy,Co-Mn precursor was in situ incorporated into the poly d... Photothermal material applied in environmental governance has attracted growing attention.By combining the Stober method and dopamine-triggered coating strategy,Co-Mn precursor was in situ incorporated into the poly dopamine(PDA)layer over the surface of silica cores.Afterwards,a unique photothermal nanosphere with SiO_(2)core and thin carbon layer and dual Co-Mn oxides shell was allowed to form by sequential heat treatment in the inert atmosphere(SiO_(2)@CoMn/C).The bimetallic fraction of Co/Mn in the carbon layer and post-treatment calcination temperature was comprehensively tuned to optimize the peroxymonosulfate(PMS)activation performance of the catalyst.The state of bimetallic species was studied including their physical distribution,chemical valence,and interplay by various characterizations.Impressively,Co oxides appear as dominant monodispersed nanoparticles(~10 nm),while Mn with cluster-like morphology is observed to uniformly distribute over thin-layer carbon and adhered to the surface of SiO_(2)nanospheres(~250 nm).The calcined temperature could tune the oxidized state of Co species,leading to the optimization of the catalytic performance of introduced dual metal species.As a result,this obtained optimal catalyst integrated the advantages of exposed bimetallic CoMn species and N-doped thin carbon to deliver excellent catalytic PMS activation performance and photothermal synergetic catalytic mineralization ability for diversiform pollutants.Further reactions condition controls and anion interference studies were conducted to identify the adaptability of the optimal catalyst.Moreover,the application of solar-driven interfacial water evaporation using optimal SiO_(2)@Co_3Mn_1/C-600 catalyst was explored,showing a high water evaporation rate of 1.48 kg·m^(-2)·h^(-1)and an efficiency of 95.2%,further revealing a comprehensive governance functionality of obtained material in the complex pollution condition. 展开更多
关键词 PHOTOTHERMAL Peroxymonosulfate(PMS)activation Bimetallic synergy water evaporation Advanced oxidation process
原文传递
Hybrid hydrovoltaic electricity generation driven by water evaporation
8
作者 Xuemei Li Gu Feng +4 位作者 Yiding Chen Jidong Li Jun Yin Wei Deng Wanlin Guo 《Nano Research Energy》 2024年第2期47-55,共9页
Water evaporation is a ubiquitous natural process exploiting thermal energy from ambient environment.Hydrovoltaic technologies emerged in recent years offer one prospective route to generate electricity from water eva... Water evaporation is a ubiquitous natural process exploiting thermal energy from ambient environment.Hydrovoltaic technologies emerged in recent years offer one prospective route to generate electricity from water evaporation,which has long been overlooked.Herein,we developed a hybrid hydrovoltaic generator driven by natural water evaporation,integrating an“evaporation motor”with an evaporation-electricity device and a droplet-electricity device.A rotary motion of the“evaporation motor”relies on phase change of ethanol driven by water-evaporation induced temperature gradient.This motion enables the evaporation-electricity device to work under a beneficial water-film operation mode to produce output of~4 V and~0.2μA,as well as propels the droplet-electricity device to convert mechanical energy into pulsed output of~100 V and~0.2 mA.As different types of hydrovoltaic devices require distinctive stimuli,it was challenging to make them work simultaneously,especially under one single driving force.We here for the first time empower two types of hydrovoltaic devices solely by omnipresent water evaporation.Therefore,this work presents a new pathway to exploiting water evaporation-associated ambient thermal energy and provides insights on developing hybrid hydrovoltaic generators. 展开更多
关键词 hybrid hydrovoltaic generator ambient thermal energy evaporation motor water evaporation
原文传递
Constructing central hollow cylindrical reduced graphene oxide foams with vertically and radially orientated porous channels for highly efficient solar-driven water evaporation and purification 被引量:1
9
作者 Changjun Li Wei Li +3 位作者 Hao-Yu Zhao Xin-Yue Feng Xiaofeng Li Zhong-Zhen Yu 《Nano Research》 SCIE EI CSCD 2023年第5期6343-6352,共10页
Although solar steam generation is an eco-friendly approach for desalinating seawater and purifying wastewater,there are still issues on how to improve the efficiency of solar energy utilization and accelerate the wat... Although solar steam generation is an eco-friendly approach for desalinating seawater and purifying wastewater,there are still issues on how to improve the efficiency of solar energy utilization and accelerate the water and heat transport inside the solardriven water evaporators.Herein,we design a central hollow cylindrical reduced graphene oxide(RGO)foam with vertically and radially orientated channels as a solar steam generation device for efficient water evaporation and purification.The vertically aligned porous channels accelerate upward transport of water to the top evaporation surface,while the radially aligned porous channels facilitate water transport and heat transfer along the radial directions for fully utilizing the heat accumulated inside the central cylindrical hole of the foam.The central hole of the foam plays a highly positive role in accumulating more heat for accelerating the water evaporation,the newly generated inner sidewall resulted from the central hole can gain extra thermal energy from surrounding environment in the same way as the outer sidewall of the foam due to the surface cooling effect of the water evaporation.As a result,the vertically and radially aligned RGO foam evaporator with central hollow cylinder achieves a high solar steam generation rate of 2.32 kg·m^(−2)·h^(−1)with an exceptional energy conversion efficiency of 120.9%under 1-sun irradiation,superior to the vertically aligned RGO foam without the central hole(1.83 kg·m^(−2)·h^(−1),96.9%)because of the enhanced water and heat transfer inside the porous channels,the efficient utilization of environmental energy. 展开更多
关键词 hollow cylindrical foams reduced graphene oxide solar steam generation water evaporation rate seawater desalination
原文传递
Integrating reduced graphene oxides and PPy nanoparticles for enhanced electricity from water evaporation 被引量:1
10
作者 Bingkun Tian Xiaofeng Jiang +3 位作者 Weicun Chu Chunxiao Zheng Wanlin Guo Zhuhua Zhang 《International Journal of Smart and Nano Materials》 SCIE EI 2023年第2期230-242,共13页
Developing high-performance nanostructured materials is key to deliver the potential of hydrovoltaic technology into practical applications.As single-component materials have approached its limit in generating hydrovo... Developing high-performance nanostructured materials is key to deliver the potential of hydrovoltaic technology into practical applications.As single-component materials have approached its limit in generating hydrovoltaic electricity,the development of multi-component hydrovoltaic materials has been necessary in continuously boosting the electricity output.Here,we report a hydrovoltaic material by integrating reduced graphene oxides and polypyrrole nanoparticles(rGO/PPy),where the rGO contributes improved conductivity and large specific surface area while PPy nanoparticles enable enhanced interaction with water.The device fabricated with this material generates a short-circuit current of 6μA as well as a maximum power density of over 1μW/cm3 from natural evaporation of water.And the substantial ion-PPy interaction enables robust voltage generation from evaporation of various salt solutions.Moreover,an outstanding scaling ability is demonstrated by connecting 10 devices in series that generate a sustainable voltage of up to~2.5 V,sufficing to power many commercial devices,e.g.LED bulb and LCD screen. 展开更多
关键词 Hydrovoltaic generator water evaporation reduced graphene oxide Ppy nanoparticles
原文传递
Facile preparation of multifunctional Cu_(2−x)S/S/rGO composite for all-round residual water remediation during interfacial solar driven water evaporation process
11
作者 Chaorui Xue Yang Shen +6 位作者 Qian Zhang Qing Chang Ning Li Ying Li Wenjing Zheng Shengliang Hu Jinlong Yang 《Nano Research》 SCIE EI CSCD 2023年第4期5953-5963,共11页
Presently,interfacial solar water evaporation(ISWE)is now injecting new vitality into the field of water remediation.However,during the ISWE process,the nonvolatile pollutants might be concentrated in residual water,a... Presently,interfacial solar water evaporation(ISWE)is now injecting new vitality into the field of water remediation.However,during the ISWE process,the nonvolatile pollutants might be concentrated in residual water,and further contaminate the environment.Preparing advanced photothermal materials is in need to get comprehensive purification of various pollutants in residual water.Herein,we report a facile laser thermal method to prepare Cu_(2−x)S/sulfur/reduced graphene oxide(Cu_(2−x)S/S/rGO)nanocomposites for realizing all-round residual water remediation during the ISWE process.The as-prepared Cu2−xS/S/rGO nanocomposites demonstrated excellent photothermal and photocatalytic properties.Through blending with GO nanosheets having excellent adsorption capacity,the synergetic effect of photothermal,photocatalytic,and adsorption properties resulted in highly efficient purification of rhodamine B,bacterial,and heavy metal ions in residual water during the ISWE process.The experimental results also showed that,increasing solar light intensity can promote the residual water remediation,but ultrafast water evaporation under high light intensity may deteriorate the purifying effect.This report may pave a new way to prepare multifunctional materials for water remediation through the ISWE technology. 展开更多
关键词 solar water evaporation PHOTOTHERMAL laser thermal PHOTOCATALYSIS ANTI-BACTERIAL
原文传递
Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-sodic Soils in Songnen Plain,Northeast China
12
作者 ZHU Wendong ZHAO Dandan +6 位作者 YANG Fan WANG Zhichun DONG Shide AN Fenghua MA Hongyuan ZHANG Lu TIBOR Tóth 《Chinese Geographical Science》 SCIE CSCD 2023年第6期1141-1152,共12页
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and... Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions. 展开更多
关键词 groundwater evaporation sodium adsorption ratio total salt content ion composition soil salinization water and salt dynamics Songnen Plain China
下载PDF
Micro–Nano Water Film Enabled High‑Performance Interfacial Solar Evaporation
13
作者 Zhen Yu Yuqing Su +3 位作者 Ruonan Gu Wei Wu Yangxi Li Shaoan Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期503-517,共15页
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable... Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications. 展开更多
关键词 Micro–nano water film Interfacial solar evaporation Solar desalination Artificial neural networks PPy sponge
下载PDF
Analysis of evaporation of high-salinity phreatic water at a burial depth of 0 m in an arid area 被引量:1
14
作者 JIA Rui-liang ZHOU Jin-long +1 位作者 LI Qiao LI Yang 《Journal of Groundwater Science and Engineering》 2015年第1期1-8,共8页
High-salinity phreatic water refers to which with total dissolved solids(TDS)>30 g/L. Previous studies have shown that high salinity phreatic water evaporation is different at different depths. High salinity phre... High-salinity phreatic water refers to which with total dissolved solids(TDS)>30 g/L. Previous studies have shown that high salinity phreatic water evaporation is different at different depths. High salinity phreatic water evaporation under 0 m depth is the basis of the high salinity phreatic water evaporation studies. In this study, evaporation of high-salinity phreatic water at a burial depth of 0 m in arid area was investigated. New insights were gained on evaporation mechanisms via experiments conducted on high-salinity phreatic water with TDS of 100 g/L at 0 m at the study site at Changji Groundwater Balance Experiment Site, Xinjiang Uygur Autonomous Region in China, where the lithology of the vadose(unsaturated zone) was silty clay. Comparison was made on the data of high-salinity phreatic water evaporation, water surface evaporation(EΦ20) and meteorological data obtained in two complete hydrological years from April 1, 2012 to March 31, 2014. The experiments demonstrated that when the lithology of the vadose zone is silty clay, the burial depth is 0 m and the TDS is 100 g/L, intra-annual variation of phreatic water evaporation is the opposite to the variation of atmospheric evaporation EΦ20 and air temperature. The salt crust formed by the evaporation of high-salinity phreatic water has a strong inhibitory effect on phreatic water evaporation. Large volumes of precipitation can reduce such an inhibitory effect. During freezing periods, surface snow cover can promote the evaporation of high-salinity phreatic water at 0 m; the thicker the snow cover, the more apparent this effect is. 展开更多
关键词 Arid area High-salinity phreatic water Phreatic water evaporation at the burial depth of 0m water evaporation
下载PDF
In situ Reduction of Silver Nanoparticles on Chitosan Hybrid Copper Phosphate Nanoflowers for Highly Efficient Plasmonic Solar-driven Interfacial Water Evaporation 被引量:1
15
作者 Mei Zhang Wanghuai Xu +3 位作者 Minfei Li Jiaqian Li Peng Wang Zuankai Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第1期30-39,共10页
The development of water purification device using solar energy has received tremendous attention.Despite extensive progress,traditional photothermal conversion usually has a high cost and high environmental impact.To... The development of water purification device using solar energy has received tremendous attention.Despite extensive progress,traditional photothermal conversion usually has a high cost and high environmental impact.To overcome this problem,we develop a low cost,durable and environmentally friendly solar evaporator.This bilayered evaporator is constructed with a thermal insulating polyvinylidene fluoride(PVDF)membrane as a bottom supporting layer and plasmonic silver nanoparticles decorated miero-sized hybrid flower(Ag/MF)as a top light-to-heat conversion layer.Compared with the sample with a flat silver film,the two-tier Ag/MF has a plasmonic enrichment property and high efficiency in converting the solar light to hcat as cach flower can gencrate a microscale hotspot by enriching the absorbed solar light.On the other hand,the PVDF membrane on the bottom with porous structure not only improves the mechanicalstability of the entire structure,but also maintains a stable water supply from the bulk water to the evaporation interface by capillarity and minimizes the thermal conduction.The combination of excellent water evaporation ability simple operation,and low cost of the production process imparts this type of plasmonic enhanced solar-driven interfacial water evaporator with promising prospects for potable water purification for point-of-use applications. 展开更多
关键词 BIONIC PLASMONIC water evaporation synergistic effect Ag NPs hybrid flower
原文传递
Stable Isotopes and Chloride Applied as Soil Water Tracers for Phreatic Evaporation Experiment
16
作者 Xiaoxu Sun Jin Xu Jiansheng Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期88-96,共9页
A phreatic water evaporation experiment,without rainfall influence,was designed to study the mechanisms of soil water movement through groundwater recharge to the unsaturated zone. Soil moisture content,chloride conce... A phreatic water evaporation experiment,without rainfall influence,was designed to study the mechanisms of soil water movement through groundwater recharge to the unsaturated zone. Soil moisture content,chloride concentration,and δD and δ~18 O values of soil water were measured. Results showthat with decreasing soil moisture content,the chloride concentration of leachate( ρ_f(Cl)) in the capillary water layer decreases,whereas the ρ_f(Cl) value of the hanging and film water layers above the capillary water layer increases. With the combined δD and δ~18 O values,the soil water in the hanging and film water layers is influenced by evaporation,although a dry sand layer of 39 cm exists above the wet sand layer. The highest evaporation rate and the largest salt accumulation occur at a depth of about 39 cm in columns d,e,and f(Six polyvinyl chloride columns were assigned as column a,b,c,d,e,and f). We deduce that soil water migrates in the form of liquid water above the capillary water layer. In the experiment,a part of phreatic water consumed is used for the movement of soil water,whereas the other part is lost to evaporation. Soil water could continue migrating upward with prolonged experiment duration. 展开更多
关键词 soil water CHLORIDE stable isotope film water phreatic water evaporation
下载PDF
Effects of mixed-based biochar on water infiltration and evaporation in aeolian sand soil
17
作者 ZOU Yiping ZHANG Shuyue +6 位作者 SHI Ziyue ZHOU Huixin ZHENG Haowei HU Jiahui MEI Jing BAI Lu JIA Jianli 《Journal of Arid Land》 SCIE CSCD 2022年第4期374-389,共16页
Aeolian sandy soil in mining areas exhibits intense evaporation and poor water retention capacity.This study was designed to find a suitable biochar application method to improve soil water infiltration and minimize s... Aeolian sandy soil in mining areas exhibits intense evaporation and poor water retention capacity.This study was designed to find a suitable biochar application method to improve soil water infiltration and minimize soil water evaporation for aeolian sand soil.Using the indoor soil column method,we studied the effects of three application patterns(A(0-20 cm was a mixed sample of mixed-based biochar and soil),B(0-10 cm was a mixed sample of mixed-based biochar and soil and 10-20 cm was soil),and C(0-10 cm was soil and 10-20 cm was a mixed sample of mixed-based biochar and soil)),four application amounts(0%(control,CK),1%,2%,and 4%of mixed-based biochar in dry soil),and two particle sizes(0.05-0.25 mm(S1)and<0.05 mm(S2))of mixed-based biochar on water infiltration and evaporation of aeolian sandy soil.We separately used five infiltration models(the Philip,Kostiakov,Horton,USDA-NRCS(United States Department of Agriculture-Natural Resources Conservation Service),and Kostiakov-Lewis models)to fit cumulative infiltration and time.Compared with CK,the application of mixed-based biochar significantly reduced cumulative soil water infiltration.Under application patterns A,B,and C,the higher the application amount and the finer the particle size were,the lower the migration speed of the wetting front.With the same application amount,cumulative soil water infiltration under application pattern A was the lowest.Taking infiltration for 10 min as an example,the reductions of cumulative soil water infiltration under the treatments of A2%(S2),A4%(S1),A4%(S2),A1%(S1),C2%(S1),and B1%(S1)were higher than 30%,which met the requirements of loess soil hydraulic parameters suitable for plant growth.The five infiltration models well fitted the effects of the treatments of application pattern C and S1 particle size(R2>0.980),but the R2 values of the Horton model exceeded 0.990 for all treatments(except for the treatment B2%(S2)).Compared with CK,all other treatments reduced cumulative soil water infiltration,except for B4%(S2).With the same application amount,cumulative soil water evaporation difference between application patterns A and B was small.Treatments of application pattern C and S1 particle size caused a larger reduction in cumulative soil water evaporation.The reductions in cumulative soil water evaporation under the treatments of C4%(S1),C4%(S2),C2%(S1),and C2%(S2)were over 15.00%.Therefore,applying 2%of mixed-based biochar with S1 particle size to the underlying layer(10-20 cm)could improve soil water infiltration while minimizing soil water evaporation.Moreover,application pattern was the main factor affecting soil water infiltration and evaporation.Further,there were interactions among the three influencing factors in the infiltration process(application amount×particle size with the most important interaction),while there were no interactions among them in the evaporation process.The results of this study could contribute to the rational application of mixed-based biochar in aeolian sandy soil and the resource utilization of urban and agricultural wastes in mining areas. 展开更多
关键词 BIOCHAR water infiltration water evaporation aeolian sand soil mining areas
下载PDF
Estimation of evaporation losses based on stable isotopes of stream water in a mountain watershed
18
作者 Zhongcong Sun Chaochen Hu +3 位作者 Di Wu Guopeng Chen Xiaoqiang Lu Xueyan Liu 《Acta Geochimica》 EI CAS CSCD 2021年第2期176-183,共8页
Water stable isotopes(δ^(2) H andδ^(18)O)can record surface water evaporation,which is an important hydrological process for understanding watershed structure and function evolution.However,the isotopic estimation o... Water stable isotopes(δ^(2) H andδ^(18)O)can record surface water evaporation,which is an important hydrological process for understanding watershed structure and function evolution.However,the isotopic estimation of water evaporation losses in the mountain watersheds remains poorly explored,which hinders understanding spatial variations of hydrological processes and their relationships with the temperature and vegetation.Here we investigatedδ^(2) H,δ^(18)O,and d-excess values of stream water along an altitude gradient of 2130 to 3380 m in Guan’egou mountain watershed at the east edge of the Qinghai-Tibet Plateau in China.The meanδ^(2) H(-69.6‰±2.6‰),δ^(18)O(-10.7‰±0.3‰),and dexcess values(16.0‰±1.4‰)of stream water indicate the inland moisture as the major source of precipitation in study area.Water stable isotopes increase linearly with decreasing altitudes,based on which we estimated the fractions of water evaporation losses along with the altitude and their variations in different vegetations.This study provides an isotopic evaluation method of water evaporation status in mountain watersheds,the results are useful for further understanding the relationship between hydrological processes and ecosystem function under the changing climate surrounding the Qinghai-Tibet Plateau. 展开更多
关键词 water stable isotopes Mountain watersheds water evaporation losses Altitude effect Rayleigh fractionation
下载PDF
Evaporation of nanoscale water on solid surfaces
19
作者 万荣正 方海平 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期1-4,共4页
The evaporation of water is essential in the macroscopic world.Recent researches show that,on solid surfaces,the evaporation of nanoscale water is quite different from that on bulk water surfaces.In this review,we sho... The evaporation of water is essential in the macroscopic world.Recent researches show that,on solid surfaces,the evaporation of nanoscale water is quite different from that on bulk water surfaces.In this review,we show the theoretical progress in the study of nanoscale water evaporation on various solid surfaces:the evaporation rate of nanoscale water does not show a monotonic decrease when the solid surface changes from hydrophobic to hydrophilic;the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on uniform surface;the evaporation of nanoscale water on patterned graphene oxide is faster than that on homogeneous one;how temperature affects the evaporation of nanoscale water on solid surface;how ions affect the evaporation of nanoscale water on graphene oxide. 展开更多
关键词 water evaporation NANOSCALE solid surface
下载PDF
Self-Healing Hydrophilic Porous Photothermal Membranes for Durable and Highly Efficient Solar-Driven Interfacial Water Evaporation
20
作者 Fuchang Xu Dehui Weng +2 位作者 Xiang Li Yang Li Junqi Sun 《CCS Chemistry》 CAS 2022年第7期2396-2408,共13页
It is highly desirable to develop a solar-driven interfacial water evaporatorwith a self-healing ability and high-efficiency water evaporation performance for water distillation and desalination;however,this process i... It is highly desirable to develop a solar-driven interfacial water evaporatorwith a self-healing ability and high-efficiency water evaporation performance for water distillation and desalination;however,this process is considerably challenging.Herein,by exploiting the advantages of a self-healing hydrophilic polymer,a self-healing hydrophilic porous photothermal(SHPP)membrane was fabricated by curing a mixture of the polymer,carbon black,and NaCl,followed by removal of the NaCl from water.Since the SHPP membrane could serve as a photothermal layer and water transportation channel simultaneously,a solar-driven interfacial evaporator could be fabricated readily by assembling the SHPP membrane with polyethylene foam.We have shown that the SHPP membrane-based evaporator exhibited a water evaporation rate of 1.68 kg m^(−2) h^(−1) and an energy efficiency of 97.3%.These values are superior to those obtained using solar-driven interfacial evaporators with self-healing capability.Notably,by hydrogen bonds reformation between the fracture surfaces,the SHPP membrane could regain its structural integrity after breaking,making the SHPPmembrane-based evaporator the first to heal entirely and repeatedly from physical damage to sustain itswater evaporation capacity.Therefore,the potential of using SHPP membranes to develop stable,long-last ing,andhigh-efficiency solar-driven interfacial water evaporators is highlighted. 展开更多
关键词 porous membranes photothermal conversion interfacial water evaporation SELF-HEALING hydrophilic polymers
原文传递
上一页 1 2 118 下一页 到第
使用帮助 返回顶部