In a scenario of climate changes and increasing stress upon available fresh water resources like rivers, lakes and aquifers, collecting fog water is a promising yet relatively unexplored potentiality. Providing suffic...In a scenario of climate changes and increasing stress upon available fresh water resources like rivers, lakes and aquifers, collecting fog water is a promising yet relatively unexplored potentiality. Providing sufficient water and reducing water extraction’s environmental impact at the same time can be a challenge with conventional ways, but fog harvesting technology presents itself as a powerful and efficient alternative. Water availability profoundly determined regional economic benefit, social relations and it also influenced environmental security and ecosystem services. Underdeveloped countries have been dealing with water scarcity issue for decades, but also wealthy countries will have to face the water crisis soon, due to unsustainable development processes. A review of the state of the art highlights the most relevant parameters to deal with when discussing about fog water harvesting. In regions with frequent fog events, this technology already proved to be a sustainable drinking water resource for rural communities and their low per capita water usage was provided by basic devices utilization. Nevertheless, in this paper, different fog water harvesting applications are investigated, besides the already existing fresh-water collection, reforestation and agricultural use. Further options, such as building components, outdoor activities and domestic devices are considered, according to different parameters, such as economic benefits, possibility of standardized production, life cycle and market attractiveness. A desirable novel concept would become relevant in specific contexts, thanks to multiple functions, offering locals designed and customized solutions. Also noteworthy are the landscape impact of such devices and the effects of the project in terms of places regeneration, raising awareness and “green” conscience creation. The study of local climatic data and improvement in fog collector applications, integration with architectural and landscape design, will expand the regions where fog harvesting can be applied and its sustainable improvements.展开更多
Fog deposition is a notable component of the water budget of herbaceous-shrub ecosystems on the central and southern coastal regions of California. This paper presents an analysis of fog water deposition rates and met...Fog deposition is a notable component of the water budget of herbaceous-shrub ecosystems on the central and southern coastal regions of California. This paper presents an analysis of fog water deposition rates and meteorological controls in Big Sur, California. Mesh-screen fog collectors were installed the Brazil Ranch weather station sites to measure fog water during the summer seasons of 2010 and 2011. Fog deposition occurred during 73% of days recorded in 2010 and 87% of days recorded in 2011. The daily average deposition rate was 2.29 L/m2 in 2010 and 3.86 L/m2 in 2011. The meteorological variables which had the greatest influence on prediction of fog deposition were wind speed, wind direction, and the dew-point depression (difference between air temperature and dew point). Based on these results, we hypothesize that high rates of summer fog deposition help sustain the productivity of California coastal vegetation through periods of low rainfall.展开更多
2022年4月10—14日浙江沿海海面出现一次持续时间长、范围广、浓度大的海雾过程。利用卫星资料、欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)发布的ERA-Interim(ECMWF Reanalysis-Interim)资料和...2022年4月10—14日浙江沿海海面出现一次持续时间长、范围广、浓度大的海雾过程。利用卫星资料、欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)发布的ERA-Interim(ECMWF Reanalysis-Interim)资料和浙江沿海自动气象观测站资料,分析此次过程的特征和成因。结果表明,低层逆温层使得低层水汽不易扩散到高空,有利于大雾的生成和维持。成雾阶段,有明显的水汽辐合,同时气温高于海面温度且差值为0~2.0℃。海雾维持且浓度较大时,水汽辐合逐渐减弱;气海温差(2 m气温减海面温度)则在0℃左右。消散阶段,有明显的水汽辐散;气海温差大于2.0℃或小于0℃。展开更多
Using the composite field observational data collected in the area south of the Nanling Mts. and numerical modeling, the seasonal features of dense fog and visibility, fog drop spectrum and physical concept of fog for...Using the composite field observational data collected in the area south of the Nanling Mts. and numerical modeling, the seasonal features of dense fog and visibility, fog drop spectrum and physical concept of fog forming have been analyzed. The occurring frequency of low visibility(≤200 m) is very high with a mean of 24.7%, a maximum of 41.8% from the end of autumn to winter and next spring. The fog processes that occur in the area south of the Nanling Mts. in spring and winter result from the interactions of complicated micro-physical processes, the local terrain, water vapor transportation and the influencing weather system. The fog processes are arisen from advection or windward slope, which is much different from the radiation fog. Cooling condensation due to the air lifted by the local mountain plays an important role in fog formation. Windward slope of the mountain is favorable to the fog formation. Dense fog can occur at lower altitudes in the windward slope of mountain, resulting in the lower visibility. The fog is mainly of small-drop spectrum with smaller number-density than that of urban fog, and its drop spectrum has descending trend in the section of smaller diameter. The inverse relationship between fog water content and visibility is the best among several relationships of micro-variables. In addition to micro-physical processes of fog body itself, the motion of irregular climbing and crossing over hillside while the fog body is being transported by the wind are also important reasons for the fluctuation of micro-physical parameters such as fog water content.展开更多
Samples of fog water collected in the area of Guangzhou during February, March and April of 2005 are used in this work to study the chemical composition of fog water in polluting fog there. Three typical episodes of p...Samples of fog water collected in the area of Guangzhou during February, March and April of 2005 are used in this work to study the chemical composition of fog water in polluting fog there. Three typical episodes of polluting fog are analyzed in terms of ionic concentration and their possible sources. It is found that the concentration of various ions in fog water is much higher than those in rainwater. Fog not only blocks visual range but contains liquid particles that result in high degree of pollution and are very harmful to human health. SO4= is the anion with the highest concentration in fog water, followed by NO3-. For the cation, Ca++ and NH4+ are the highest in concentration. It is then known that rainwater is more acidic than fog water, indicating that ionic concentration of fog water is much higher than that of rainwater, but there are much more buffering materials in fog water, like NH4+ and Ca++. There is significant enrichment of Ca++, SO4=, and Mg++ in fog water. In the Guangzhou area, fog water from polluting fog is mainly influenced continental environment and human activity. The episodes of serious fog pollution during the time have immediate relationships with the presence of abundant water vapor and large amount of polluting aerosol particles.展开更多
In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulatio...In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulation for long-term periods.The simulations were performed for January,February,March,and July,2005 with a coarse 3-kin and a nested fine 1-km grid domains. Results of the simulations were compared with data from ten meteorological observatories,fog sampling site in Mt.Rokko,and visibility measurem...展开更多
The microphysical properties of a long-lasting heavy fog event are examined based on the results from a comprehensive field campaign conducted during the winter of 2006 at Pancheng (32.2°N, 118.7°E), Jiang...The microphysical properties of a long-lasting heavy fog event are examined based on the results from a comprehensive field campaign conducted during the winter of 2006 at Pancheng (32.2°N, 118.7°E), Jiangsu Province, China. It is demonstrated that the key microphysical properties (liquid water content, fog droplet concentration, mean radius and standard deviation) exhibited positive correlations with one another in general, and that the 5-min-average maximum value of fog liquid water content was sometimes greater than 0.5 g m-3. Further analysis shows that the unique combination of positive correlations likely arose from the simultaneous supply of moist air and fog condensation nuclei associated with the advection of warm air, which further led to high liquid water content. High values of liquid water content and droplet concentration conspired to cause low visibility (〈50 m) for a prolonged period of about 40 h. Examination of the microphysical relationships conditioned by the corresponding autoconversion threshold functions shows that the collision-coalescence process was sometimes likely to occur, weakening the positive correlations induced by droplet activation and condensational growth. Statistical analysis shows that the observed droplet size distribution can be described well by the Gamma distribution.展开更多
With the sea surface observations from ICOADS for the years 1960-2002, the conditions of coohng, evaporauon anu water vapol transportation are analyzed and compared for the formation of seasonal sea fog in April-July ...With the sea surface observations from ICOADS for the years 1960-2002, the conditions of coohng, evaporauon anu water vapol transportation are analyzed and compared for the formation of seasonal sea fog in April-July in the Huanghai Sea. It is found that sea surface cooling is always existent during the fog seasons while sea surface evaporation only appears in April-June in the Huanghai Sea. Local evaporation alone is not sufficient to form fogs though it may lead to light ones. Water vapor transported from the low-latitudes accomplished by specific synoptic systems is the most important condition for sea fog formation. In general, the moistening effect is more important than the cooling one.展开更多
In this study, we measured the droplet size distribution(DSD) and visibility of sea fog using a fog droplet spectrometer and visibility meter, respectively, during the July 23-August 3 and August 22-September 13 perio...In this study, we measured the droplet size distribution(DSD) and visibility of sea fog using a fog droplet spectrometer and visibility meter, respectively, during the July 23-August 3 and August 22-September 13 periods of the 2016 Chinese National Arctic Research Expedition. We calculated the visibility using the Mie theory and the DSD data and then compared the calculated with the observed visibility. The comparison shows that the deviations in the calculated visibility caused by DSD data sampling errors cannot be ignored. During navigation, wind and ship speeds tended to push or pull the sampled air and cause turbulence pulsation, which influenced the sampling of the fog droplet spectrometer. This influence is weak when the liquid water content(LWC) is high but becomes stronger as the LWC decreases. Taking the sailing speed and heading into consideration, the wind speed component parallel and perpendicular to the air inlet of the fog droplet spectrometer exhibit different laws in the deviation. By performing a fitting analysis of the calculated and observed visibilities under different wind speeds and wind directions, here, we present two sets of correction coefficients for the two wind-speed components and a method for correcting the calculated visibility. This correction method shows excellent results.展开更多
Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (...Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (April-May) with the method of trajectory analysis,and analyzes the changes of proportions of warm and cold sea fogs along different paths of airflow.According to the heat balance equation,we investigate the relationships between the marine meteorological conditions and the proportion of warm and cold sea fog along different airflow paths.The major results are summarized as follows.(1) Sea fogs over the Huanghai Sea in spring are not only warm fog but also cold fog.The proportion of warm fog only accounts for 44% in April,while increases as high as 57% in May.(2) Four primary airflow paths leading to spring sea fog are identified.They are originated from the northwest,east,southeast and southwest of the Huanghai Sea,respectively.The occurrence ratios of the warm sea fog along the east and southeast airflow paths are high of 55% and 70%,while these along the southwest and northwest airflow paths are merely 17.9% and 50%.(3) The key physical processes governing the warm/cold sea fog are heat advection transport,longwave radiation cooling at fog top,solar shortwave warming and latent heat flux between airsea interfaces.(4) The characteristics of sea fog along the four airflow paths relate closely to the conditions of water vapor advection,and the vertical distribution of relative humidity.展开更多
文摘In a scenario of climate changes and increasing stress upon available fresh water resources like rivers, lakes and aquifers, collecting fog water is a promising yet relatively unexplored potentiality. Providing sufficient water and reducing water extraction’s environmental impact at the same time can be a challenge with conventional ways, but fog harvesting technology presents itself as a powerful and efficient alternative. Water availability profoundly determined regional economic benefit, social relations and it also influenced environmental security and ecosystem services. Underdeveloped countries have been dealing with water scarcity issue for decades, but also wealthy countries will have to face the water crisis soon, due to unsustainable development processes. A review of the state of the art highlights the most relevant parameters to deal with when discussing about fog water harvesting. In regions with frequent fog events, this technology already proved to be a sustainable drinking water resource for rural communities and their low per capita water usage was provided by basic devices utilization. Nevertheless, in this paper, different fog water harvesting applications are investigated, besides the already existing fresh-water collection, reforestation and agricultural use. Further options, such as building components, outdoor activities and domestic devices are considered, according to different parameters, such as economic benefits, possibility of standardized production, life cycle and market attractiveness. A desirable novel concept would become relevant in specific contexts, thanks to multiple functions, offering locals designed and customized solutions. Also noteworthy are the landscape impact of such devices and the effects of the project in terms of places regeneration, raising awareness and “green” conscience creation. The study of local climatic data and improvement in fog collector applications, integration with architectural and landscape design, will expand the regions where fog harvesting can be applied and its sustainable improvements.
文摘Fog deposition is a notable component of the water budget of herbaceous-shrub ecosystems on the central and southern coastal regions of California. This paper presents an analysis of fog water deposition rates and meteorological controls in Big Sur, California. Mesh-screen fog collectors were installed the Brazil Ranch weather station sites to measure fog water during the summer seasons of 2010 and 2011. Fog deposition occurred during 73% of days recorded in 2010 and 87% of days recorded in 2011. The daily average deposition rate was 2.29 L/m2 in 2010 and 3.86 L/m2 in 2011. The meteorological variables which had the greatest influence on prediction of fog deposition were wind speed, wind direction, and the dew-point depression (difference between air temperature and dew point). Based on these results, we hypothesize that high rates of summer fog deposition help sustain the productivity of California coastal vegetation through periods of low rainfall.
文摘2022年4月10—14日浙江沿海海面出现一次持续时间长、范围广、浓度大的海雾过程。利用卫星资料、欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)发布的ERA-Interim(ECMWF Reanalysis-Interim)资料和浙江沿海自动气象观测站资料,分析此次过程的特征和成因。结果表明,低层逆温层使得低层水汽不易扩散到高空,有利于大雾的生成和维持。成雾阶段,有明显的水汽辐合,同时气温高于海面温度且差值为0~2.0℃。海雾维持且浓度较大时,水汽辐合逐渐减弱;气海温差(2 m气温减海面温度)则在0℃左右。消散阶段,有明显的水汽辐散;气海温差大于2.0℃或小于0℃。
基金Research on the physical structure and visibility of heavy fog in the mountainous region of Nan Ling Mts., a project from the Natural Science Foundation of China (49975001)
文摘Using the composite field observational data collected in the area south of the Nanling Mts. and numerical modeling, the seasonal features of dense fog and visibility, fog drop spectrum and physical concept of fog forming have been analyzed. The occurring frequency of low visibility(≤200 m) is very high with a mean of 24.7%, a maximum of 41.8% from the end of autumn to winter and next spring. The fog processes that occur in the area south of the Nanling Mts. in spring and winter result from the interactions of complicated micro-physical processes, the local terrain, water vapor transportation and the influencing weather system. The fog processes are arisen from advection or windward slope, which is much different from the radiation fog. Cooling condensation due to the air lifted by the local mountain plays an important role in fog formation. Windward slope of the mountain is favorable to the fog formation. Dense fog can occur at lower altitudes in the windward slope of mountain, resulting in the lower visibility. The fog is mainly of small-drop spectrum with smaller number-density than that of urban fog, and its drop spectrum has descending trend in the section of smaller diameter. The inverse relationship between fog water content and visibility is the best among several relationships of micro-variables. In addition to micro-physical processes of fog body itself, the motion of irregular climbing and crossing over hillside while the fog body is being transported by the wind are also important reasons for the fluctuation of micro-physical parameters such as fog water content.
基金Natural Science Foundation of China (40375002, 40418008, 40775011, U0733004)Project 863 (2006AA06A306, 2006AA06A308)+3 种基金National Basic Research Program of China (973 Program):2005CB422207Natural Science Foundation of Guangdong Province (033029)Project of Key Scientific Research of Guangdong Province (2004A30401002, 2005B32601011)Project of Applied Fundamental Research of Guangzhou (2004J1-0021)
文摘Samples of fog water collected in the area of Guangzhou during February, March and April of 2005 are used in this work to study the chemical composition of fog water in polluting fog there. Three typical episodes of polluting fog are analyzed in terms of ionic concentration and their possible sources. It is found that the concentration of various ions in fog water is much higher than those in rainwater. Fog not only blocks visual range but contains liquid particles that result in high degree of pollution and are very harmful to human health. SO4= is the anion with the highest concentration in fog water, followed by NO3-. For the cation, Ca++ and NH4+ are the highest in concentration. It is then known that rainwater is more acidic than fog water, indicating that ionic concentration of fog water is much higher than that of rainwater, but there are much more buffering materials in fog water, like NH4+ and Ca++. There is significant enrichment of Ca++, SO4=, and Mg++ in fog water. In the Guangzhou area, fog water from polluting fog is mainly influenced continental environment and human activity. The episodes of serious fog pollution during the time have immediate relationships with the presence of abundant water vapor and large amount of polluting aerosol particles.
文摘In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulation for long-term periods.The simulations were performed for January,February,March,and July,2005 with a coarse 3-kin and a nested fine 1-km grid domains. Results of the simulations were compared with data from ten meteorological observatories,fog sampling site in Mt.Rokko,and visibility measurem...
基金mainly provided by the National Natural Science Foundation of China (Grant Nos. 40537034 and 40775012)the Natural Science Fund for Universities in Jiangsu Province(Grant Nos. 06KJA17021 and 08KJA170002)+1 种基金the Meteorology Fund of the Ministry of Science and Technology [Grant No. GYHY (QX) 2007-6-26]the Qing-Lan Project for cloud-fog-precipitation-aerosol study in Jiangsu Province and the Graduate Student Innovation Plan in the Universities of Jiangsu Province (CX09B 226Z)
文摘The microphysical properties of a long-lasting heavy fog event are examined based on the results from a comprehensive field campaign conducted during the winter of 2006 at Pancheng (32.2°N, 118.7°E), Jiangsu Province, China. It is demonstrated that the key microphysical properties (liquid water content, fog droplet concentration, mean radius and standard deviation) exhibited positive correlations with one another in general, and that the 5-min-average maximum value of fog liquid water content was sometimes greater than 0.5 g m-3. Further analysis shows that the unique combination of positive correlations likely arose from the simultaneous supply of moist air and fog condensation nuclei associated with the advection of warm air, which further led to high liquid water content. High values of liquid water content and droplet concentration conspired to cause low visibility (〈50 m) for a prolonged period of about 40 h. Examination of the microphysical relationships conditioned by the corresponding autoconversion threshold functions shows that the collision-coalescence process was sometimes likely to occur, weakening the positive correlations induced by droplet activation and condensational growth. Statistical analysis shows that the observed droplet size distribution can be described well by the Gamma distribution.
文摘With the sea surface observations from ICOADS for the years 1960-2002, the conditions of coohng, evaporauon anu water vapol transportation are analyzed and compared for the formation of seasonal sea fog in April-July in the Huanghai Sea. It is found that sea surface cooling is always existent during the fog seasons while sea surface evaporation only appears in April-June in the Huanghai Sea. Local evaporation alone is not sufficient to form fogs though it may lead to light ones. Water vapor transported from the low-latitudes accomplished by specific synoptic systems is the most important condition for sea fog formation. In general, the moistening effect is more important than the cooling one.
基金supported by the National Natural Science Foundation of China (No. 41330960)the National Major Science Project of China for Global Change Research (No. 2015CB953900)the Major State Basic Research Development Program (No. 2016YFC1402702)
文摘In this study, we measured the droplet size distribution(DSD) and visibility of sea fog using a fog droplet spectrometer and visibility meter, respectively, during the July 23-August 3 and August 22-September 13 periods of the 2016 Chinese National Arctic Research Expedition. We calculated the visibility using the Mie theory and the DSD data and then compared the calculated with the observed visibility. The comparison shows that the deviations in the calculated visibility caused by DSD data sampling errors cannot be ignored. During navigation, wind and ship speeds tended to push or pull the sampled air and cause turbulence pulsation, which influenced the sampling of the fog droplet spectrometer. This influence is weak when the liquid water content(LWC) is high but becomes stronger as the LWC decreases. Taking the sailing speed and heading into consideration, the wind speed component parallel and perpendicular to the air inlet of the fog droplet spectrometer exhibit different laws in the deviation. By performing a fitting analysis of the calculated and observed visibilities under different wind speeds and wind directions, here, we present two sets of correction coefficients for the two wind-speed components and a method for correcting the calculated visibility. This correction method shows excellent results.
基金supported in part by the National Natural Science Foundation of China under contract Nos 40675013 and 40906010the China Meteorological Administration project for popularizing new techniques under contract No.CMATG2007M23+1 种基金the scientific and technological planning project from Guangdong Province under contract No.2006B37202005The work of Wang Xin is supported by City University of Hong Kong Research Scholarship Enhancement Scheme and the City University of Hong Kong Strategic Research Grants 7002329
文摘Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (April-May) with the method of trajectory analysis,and analyzes the changes of proportions of warm and cold sea fogs along different paths of airflow.According to the heat balance equation,we investigate the relationships between the marine meteorological conditions and the proportion of warm and cold sea fog along different airflow paths.The major results are summarized as follows.(1) Sea fogs over the Huanghai Sea in spring are not only warm fog but also cold fog.The proportion of warm fog only accounts for 44% in April,while increases as high as 57% in May.(2) Four primary airflow paths leading to spring sea fog are identified.They are originated from the northwest,east,southeast and southwest of the Huanghai Sea,respectively.The occurrence ratios of the warm sea fog along the east and southeast airflow paths are high of 55% and 70%,while these along the southwest and northwest airflow paths are merely 17.9% and 50%.(3) The key physical processes governing the warm/cold sea fog are heat advection transport,longwave radiation cooling at fog top,solar shortwave warming and latent heat flux between airsea interfaces.(4) The characteristics of sea fog along the four airflow paths relate closely to the conditions of water vapor advection,and the vertical distribution of relative humidity.