For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at ...This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.展开更多
Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and period...Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.展开更多
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates...By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and mini- mized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The pre- dicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.展开更多
The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is pro...The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi-2D model for pure liquid zone and one-dimensional( 1D) discrete vapor cavity model for vaporous cavity zone. The quasi-2D model solves two-dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two-phase water flows caused by the rapid downstream valve closure in a reservoir-pipe-valve system.The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature,respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.展开更多
In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation...In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.展开更多
The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a...The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [展开更多
To solve water hammer problems in pipeline systems,many numerical simulation approaches have been developed. This paper improves a flux vector splitting( FVS) scheme whose grid is the same as the fixedgrid MOC scheme....To solve water hammer problems in pipeline systems,many numerical simulation approaches have been developed. This paper improves a flux vector splitting( FVS) scheme whose grid is the same as the fixedgrid MOC scheme. The proposed FVS scheme is used to analyze water hammer problems caused by a pump abrupt shutdown in a pumping system with an air vessel. This paper also proposes a pump-valve-vessel model combining a pump-valve model with an air vessel model. The results show that the data obtained by the FVS scheme are similar to the ones obtained by the fixed-grid method of characteristics( MOC). And the results using the pump-valve-vessel model are almost the same as the ones using both the pump-valve model and the air vessel model. Therefore,it is effective that the proposed FVS scheme is used to solve water hammer problems and the pump-valve-vessel model replaces both the pump-valve model and the air vessel model to simulate water hammer flows in the pumping system with the air vessel.展开更多
The method of characteristic(MOC) was adopted to analyze the check valve-induced water hammer behaviors for a Parallel Pumps Feedwater System(PPFS) during the alternate startup process.The motion of check valve disc w...The method of characteristic(MOC) was adopted to analyze the check valve-induced water hammer behaviors for a Parallel Pumps Feedwater System(PPFS) during the alternate startup process.The motion of check valve disc was simulated using inertial valve model.Transient parameters including the pressure oscillation,local flow velocity and slamming of the check valve disc etc.have been obtained.The results showed that severe slamming between the valve disc and valve seat occurred during the alternate startup of parallel pumps.The induced maximum pressure vibration amplitude is up to 5.0 MPa.The scheme of appending a damping torque to slow down the check valve closing speed was also performed to mitigate of water hammer.It has been numerically approved to be an effective approach.展开更多
In allusion to easy invalidation of damping valve in vehicle shock absorber caused by the impact from the road surface, the importance of the study of damping valve water hammer pressure is presented. The physical mod...In allusion to easy invalidation of damping valve in vehicle shock absorber caused by the impact from the road surface, the importance of the study of damping valve water hammer pressure is presented. The physical model of damping valve with the circle throttle slice is established. The time for the throttle slice deformation is studied by using the finite software, and the laws that how the structure parameters affect the deformation time are obtained. Combining the theory of water hammer, the water hammer initial and boundary condition of the damping valve is deduced, and the water hammer model of throttle slice is established. The analysis of simulation results indicates that the water hammer pressure amplitude and the amount of water hammer oscillation period can be reduced and the dependability of the valve can be enhanced by modifying the structure parameters and aperture width between slice and valve body.展开更多
To realize the accurate control of water hammer in pipes by valve stroking, based on basic differential equations of water hammer subjected to initial and boundary conditions, the traveling solution of wave equations ...To realize the accurate control of water hammer in pipes by valve stroking, based on basic differential equations of water hammer subjected to initial and boundary conditions, the traveling solution of wave equations in finite region was applied to the linear water hammer problem. With the given velocity function at the valve and the introduction of curve integration independent of integral path, the exact analytic solution of dimensionless water hammer pressure was obtained in the course of valve closing. Based on the definition of eigen wave height, optimal eigen wave height and observation time, the control goal of water hammer pressure and the judgment rule of the optimal eigen wave height were determined, then the optimal velocity function in the calculated example was derived, which can reduce the water hammer pressure maximally. According to this function, a valve closing program was set, and the optimal control of water hammer could be realized.展开更多
Water hammer phenomenon involves the transformation of kinetic energy in pressure energy, this transformation occurs as the fluid conditions change inside the pipe in quite a short time. Industry requires to affront f...Water hammer phenomenon involves the transformation of kinetic energy in pressure energy, this transformation occurs as the fluid conditions change inside the pipe in quite a short time. Industry requires to affront frequent flow interruptions in pipe systems due to the closing of valves or stopping of pumping equipment. This phenomenon can initiate serious damages like destruction of the pipe system involving leakage of the working fluid to the environment. If the system operates in a fragile environment, as in cold regions, concern about the consequences of leakage increases due to the variation of physical properties of fluid as well as the pipe material as a function of the temperature. Water hammer effects can be controlled focusing efforts on reducing the pressure increment that takes place once the phenomenon is presented. Some methods try to reduce the time of closure or the rate of change before the closure using special valves, others install additional elements to absorb the pressure surge and dissipate energy, others install relief valves to release the pressure, and others try to split the problem is smaller sections by installing check valves with dashpot or non-return valves. Splitting the pipeline into shorter sections is often used to help preventing the pipeline length of water falling back after a pump stops. In this paper the numerical results of maximum and minimum pressure values at both ends of a closed section are compared to experimental data. The numerical results follow the experimental trends.展开更多
The particles of polymetallic nodules in hydraulic hoisting flows that are used for mining in deep sea are rather coarse, therefore their flow velocity is smaller than that of the surrounding water. The characteristic...The particles of polymetallic nodules in hydraulic hoisting flows that are used for mining in deep sea are rather coarse, therefore their flow velocity is smaller than that of the surrounding water. The characteristics of solid liquid flows such as their density, concentration, elastic modulus and resistance were discussed. The wave propagation speed and the continuity and momentum equations of water hammer in coarse grained solid liquid flows were theoretically derived, and a water hammer model for such flows was developed.展开更多
There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms h...There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms had important roles in the development of theoretical and practical applications of hydro-aerodynamics and related industries. The third invariant form of hydrodynamic equations is one for the dimensions of spaces. For this goal, the hyper quantities (space and physics) are introduced. Then these are created we can easily cover all problems in arbitrary dimensions (3D, 2D, 1D, separate space for liquids or constituent matters). In particularly, when they are applied to water hammer problem, which is an especially problem, we can receive immediately celerity and pressure of the event.展开更多
The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, ...The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
基金supported by the National Natural Science Foundation of China (Grant No.50539070)the Major State Basic Research Development Program of China (Grant No.2006CB403304)
文摘This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.
基金supported by the National Natural Science Foundation of China(Grant No.50875081)China Postdoctoral Science Foundation(Grant No.20080440992)+1 种基金the Planned Science and Technology Support Project of Hunan Province(Grant No.2009SK3159)Graduate Innovation Fund of Hunan University of Science and Technology(Grant No.S100109)
文摘Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.
基金supported in part by the National Natural Science Foundation of China,Key Project (10532010)the Ministry of Science and Technology of China’s Turbulence Program(2009CB724101)+1 种基金the National Basic Research Program of China(2007CB714600)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(10921202/A0204)
文摘By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and mini- mized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The pre- dicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51208160)the Natural Science Foundation of Heilongjiang Province(Grant No.QC2012C056)
文摘The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi-2D model for pure liquid zone and one-dimensional( 1D) discrete vapor cavity model for vaporous cavity zone. The quasi-2D model solves two-dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two-phase water flows caused by the rapid downstream valve closure in a reservoir-pipe-valve system.The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature,respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.
文摘In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.
文摘The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [
基金Sponsored by the National Natural Science Foundation of China(Grant No.51208160)the Natural Science Foundation of Heilongjiang Province(Grant No.QC2012C056)
文摘To solve water hammer problems in pipeline systems,many numerical simulation approaches have been developed. This paper improves a flux vector splitting( FVS) scheme whose grid is the same as the fixedgrid MOC scheme. The proposed FVS scheme is used to analyze water hammer problems caused by a pump abrupt shutdown in a pumping system with an air vessel. This paper also proposes a pump-valve-vessel model combining a pump-valve model with an air vessel model. The results show that the data obtained by the FVS scheme are similar to the ones obtained by the fixed-grid method of characteristics( MOC). And the results using the pump-valve-vessel model are almost the same as the ones using both the pump-valve model and the air vessel model. Therefore,it is effective that the proposed FVS scheme is used to solve water hammer problems and the pump-valve-vessel model replaces both the pump-valve model and the air vessel model to simulate water hammer flows in the pumping system with the air vessel.
基金Supported by the national key laboratory on Bubble Physics and Natural Circulation (BNPC)the Program for New Century Excellent Talents in University (NCET-06-0837)
文摘The method of characteristic(MOC) was adopted to analyze the check valve-induced water hammer behaviors for a Parallel Pumps Feedwater System(PPFS) during the alternate startup process.The motion of check valve disc was simulated using inertial valve model.Transient parameters including the pressure oscillation,local flow velocity and slamming of the check valve disc etc.have been obtained.The results showed that severe slamming between the valve disc and valve seat occurred during the alternate startup of parallel pumps.The induced maximum pressure vibration amplitude is up to 5.0 MPa.The scheme of appending a damping torque to slow down the check valve closing speed was also performed to mitigate of water hammer.It has been numerically approved to be an effective approach.
基金Sponsored by the Ministerial Level Advanced Research Foundation (623010202 4)
文摘In allusion to easy invalidation of damping valve in vehicle shock absorber caused by the impact from the road surface, the importance of the study of damping valve water hammer pressure is presented. The physical model of damping valve with the circle throttle slice is established. The time for the throttle slice deformation is studied by using the finite software, and the laws that how the structure parameters affect the deformation time are obtained. Combining the theory of water hammer, the water hammer initial and boundary condition of the damping valve is deduced, and the water hammer model of throttle slice is established. The analysis of simulation results indicates that the water hammer pressure amplitude and the amount of water hammer oscillation period can be reduced and the dependability of the valve can be enhanced by modifying the structure parameters and aperture width between slice and valve body.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50478025 and 50506009) the 46th China Postdoctoral Science Foundation(Grant No.20090460912)
文摘To realize the accurate control of water hammer in pipes by valve stroking, based on basic differential equations of water hammer subjected to initial and boundary conditions, the traveling solution of wave equations in finite region was applied to the linear water hammer problem. With the given velocity function at the valve and the introduction of curve integration independent of integral path, the exact analytic solution of dimensionless water hammer pressure was obtained in the course of valve closing. Based on the definition of eigen wave height, optimal eigen wave height and observation time, the control goal of water hammer pressure and the judgment rule of the optimal eigen wave height were determined, then the optimal velocity function in the calculated example was derived, which can reduce the water hammer pressure maximally. According to this function, a valve closing program was set, and the optimal control of water hammer could be realized.
文摘Water hammer phenomenon involves the transformation of kinetic energy in pressure energy, this transformation occurs as the fluid conditions change inside the pipe in quite a short time. Industry requires to affront frequent flow interruptions in pipe systems due to the closing of valves or stopping of pumping equipment. This phenomenon can initiate serious damages like destruction of the pipe system involving leakage of the working fluid to the environment. If the system operates in a fragile environment, as in cold regions, concern about the consequences of leakage increases due to the variation of physical properties of fluid as well as the pipe material as a function of the temperature. Water hammer effects can be controlled focusing efforts on reducing the pressure increment that takes place once the phenomenon is presented. Some methods try to reduce the time of closure or the rate of change before the closure using special valves, others install additional elements to absorb the pressure surge and dissipate energy, others install relief valves to release the pressure, and others try to split the problem is smaller sections by installing check valves with dashpot or non-return valves. Splitting the pipeline into shorter sections is often used to help preventing the pipeline length of water falling back after a pump stops. In this paper the numerical results of maximum and minimum pressure values at both ends of a closed section are compared to experimental data. The numerical results follow the experimental trends.
文摘The particles of polymetallic nodules in hydraulic hoisting flows that are used for mining in deep sea are rather coarse, therefore their flow velocity is smaller than that of the surrounding water. The characteristics of solid liquid flows such as their density, concentration, elastic modulus and resistance were discussed. The wave propagation speed and the continuity and momentum equations of water hammer in coarse grained solid liquid flows were theoretically derived, and a water hammer model for such flows was developed.
文摘There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms had important roles in the development of theoretical and practical applications of hydro-aerodynamics and related industries. The third invariant form of hydrodynamic equations is one for the dimensions of spaces. For this goal, the hyper quantities (space and physics) are introduced. Then these are created we can easily cover all problems in arbitrary dimensions (3D, 2D, 1D, separate space for liquids or constituent matters). In particularly, when they are applied to water hammer problem, which is an especially problem, we can receive immediately celerity and pressure of the event.
基金Hi-Tech Research and Development Program of China (863 Program)(2002AA601140)
文摘The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.