Objective: This study aims to evaluate the safety and efficacy of PETD combined with nerve root water imaging of MRI for the treatment of lumbar disc herniation. Methods: A retrospective review was performed on 62 pat...Objective: This study aims to evaluate the safety and efficacy of PETD combined with nerve root water imaging of MRI for the treatment of lumbar disc herniation. Methods: A retrospective review was performed on 62 patients with lumbar disc herniation from March 2019 to March 2021. The study included an experimental group of 30 patients and a control group of 32 patients. The experimental group underwent PETD combined with nerve root water imaging of MRI, while the control group received traditional PETD treatment. The visual analogue scoring method (VAS score), and JOA lumbar spine function score before and after surgery were compared between the two groups, and efficacy was assessed and compared using the MacNab score. Results: The mean operation time was significantly reduced in the experimental group (56.43 ±10.40 minutes) compared to the control group (65.69 ±14.12 minutes). The VAS score was compared between the two groups with preoperative (p = 0.624), one month after surgery (p = 0.325), three months after surgery (p = 0.676), one year after surgery (p = 0.341);The JOA score was compared between the two groups with preoperative (p = 0.961), one month after the surgery (p = 0.266), three months after surgery (p = 0.185), one year after surgery (p = 0.870), they were no significant statistical difference;The efficacy evaluation of the last follow-up Macnab showed that all the 30 patients in the experimental group were excellent, 31 of 32 patients in the control group were excellent, 1 case was good;There was no statistical difference in the comparison between the two groups (p > 0.05). Conclusion: The study concludes that the combined approach of PETD with nerve root water imaging of MRI is a safe, effective, and more efficient alternative to conventional PETD for treating lumbar disc herniation.展开更多
As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot...As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot conditions,which affect the identification of water gauges.To solve this problem,a water gauge image denoising model based on improved adaptive total variation is proposed.Firstly,the regular term exponent in the adaptive total variational equation is changed to an inverse cosine function;secondly,the differential curvature is used to distinguish the image noise points and increase the smoothing strength at the noise points;finally,according to the characteristics of the gradient mode and adaptive gradient threshold after Gaussian filtering,the New model can adaptively denoise in the smooth area and protect the edge area,so as to have the characteristics of both edge-preserving denoising.The experimental results show that the new model has a great improvement in image vision,higher iteration efficiency and an average increase of 1.6 dB in peak signal-to-noise ratio,and an average increase of 9%in structural similarity,which is more beneficial to practical applications.展开更多
Cold seeps are widely developed on the seabed of continental margins and can form gas plumes due to the upward migration of methane-rich fluids.The detection and automatic segmentation of gas plumes are of great signi...Cold seeps are widely developed on the seabed of continental margins and can form gas plumes due to the upward migration of methane-rich fluids.The detection and automatic segmentation of gas plumes are of great significance in locating and studying the cold seep system that is usually accompanied by hydrate layers in the subsurface.A multibeam echo-sounder system(MBES)can record the complete backscatter intensity of the water column,and it is one of the most effective means for detecting cold seeps.However,the gas plumes recorded in multibeam water column images(WCI)are usually blurred due to the interference of the complicated water environment and the sidelobes of the MBES,making it difficult to obtain the effective segmentation.Therefore,based on the existing UNet semantic segmentation network,this paper proposes an AP-UNet network combining the convolutional block attention module and the pyramid pooling module for the automatic segmentation and extraction of gas plumes.Comparative experiments are conducted among three traditional segmentation methods and two deep learning methods.The results show that the AP-UNet segmentation model can effectively suppress complicated water column noise interference.The segmentation precision,the Dice coefficient,and the recall rate of this model are 92.09%,92.00%,and 92.49%,respectively,which are 1.17%,2.10%,and 2.07%higher than the results of the UNet.展开更多
Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this...Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.展开更多
文摘Objective: This study aims to evaluate the safety and efficacy of PETD combined with nerve root water imaging of MRI for the treatment of lumbar disc herniation. Methods: A retrospective review was performed on 62 patients with lumbar disc herniation from March 2019 to March 2021. The study included an experimental group of 30 patients and a control group of 32 patients. The experimental group underwent PETD combined with nerve root water imaging of MRI, while the control group received traditional PETD treatment. The visual analogue scoring method (VAS score), and JOA lumbar spine function score before and after surgery were compared between the two groups, and efficacy was assessed and compared using the MacNab score. Results: The mean operation time was significantly reduced in the experimental group (56.43 ±10.40 minutes) compared to the control group (65.69 ±14.12 minutes). The VAS score was compared between the two groups with preoperative (p = 0.624), one month after surgery (p = 0.325), three months after surgery (p = 0.676), one year after surgery (p = 0.341);The JOA score was compared between the two groups with preoperative (p = 0.961), one month after the surgery (p = 0.266), three months after surgery (p = 0.185), one year after surgery (p = 0.870), they were no significant statistical difference;The efficacy evaluation of the last follow-up Macnab showed that all the 30 patients in the experimental group were excellent, 31 of 32 patients in the control group were excellent, 1 case was good;There was no statistical difference in the comparison between the two groups (p > 0.05). Conclusion: The study concludes that the combined approach of PETD with nerve root water imaging of MRI is a safe, effective, and more efficient alternative to conventional PETD for treating lumbar disc herniation.
文摘As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot conditions,which affect the identification of water gauges.To solve this problem,a water gauge image denoising model based on improved adaptive total variation is proposed.Firstly,the regular term exponent in the adaptive total variational equation is changed to an inverse cosine function;secondly,the differential curvature is used to distinguish the image noise points and increase the smoothing strength at the noise points;finally,according to the characteristics of the gradient mode and adaptive gradient threshold after Gaussian filtering,the New model can adaptively denoise in the smooth area and protect the edge area,so as to have the characteristics of both edge-preserving denoising.The experimental results show that the new model has a great improvement in image vision,higher iteration efficiency and an average increase of 1.6 dB in peak signal-to-noise ratio,and an average increase of 9%in structural similarity,which is more beneficial to practical applications.
基金Supported by the National Natural Science Foundation of China (Nos.41930535,41906165)the High-level Foreign Expert Introduction Program (No.G2021025006L)the SDUST Research Fund (No.2019TDJH103)。
文摘Cold seeps are widely developed on the seabed of continental margins and can form gas plumes due to the upward migration of methane-rich fluids.The detection and automatic segmentation of gas plumes are of great significance in locating and studying the cold seep system that is usually accompanied by hydrate layers in the subsurface.A multibeam echo-sounder system(MBES)can record the complete backscatter intensity of the water column,and it is one of the most effective means for detecting cold seeps.However,the gas plumes recorded in multibeam water column images(WCI)are usually blurred due to the interference of the complicated water environment and the sidelobes of the MBES,making it difficult to obtain the effective segmentation.Therefore,based on the existing UNet semantic segmentation network,this paper proposes an AP-UNet network combining the convolutional block attention module and the pyramid pooling module for the automatic segmentation and extraction of gas plumes.Comparative experiments are conducted among three traditional segmentation methods and two deep learning methods.The results show that the AP-UNet segmentation model can effectively suppress complicated water column noise interference.The segmentation precision,the Dice coefficient,and the recall rate of this model are 92.09%,92.00%,and 92.49%,respectively,which are 1.17%,2.10%,and 2.07%higher than the results of the UNet.
基金Under the auspices of National Key Research and Development Program(No.2016YFC0500203)National Natural Science Foundation of China(No.41571427)
文摘Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.