The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage...The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage detection are not only expensive and time consuming, but also have a low efficient. As a result, the global leakage detection methods such as leak detection based on simulation and calibration of the network have been considered recently. In this research, leak detection based on calibration in two hypothetical and a laboratorial networks is considered. Additionally a novel optimization method called step-by-step elimination method (SSEM) combining with a genetic algorithm (GA) is introduced to calibration and leakage detection in networks. This method step-by-step detects and eliminates the nodes that provide no contribution in leakage among uncertain parameters of calibration of a network. The proposed method initiates with an ordinary calibration for a studied network, follow by elimination of suspicious nodes among adjusted parameters, then, the network is re-calibrated. Finally the process is repeated until the numbers of unknown demands are equal to the desired numbers or the exact leakage locations and values are determined. These investigations illustrate the capability of this method for detecting the locations and sizes of leakages.展开更多
During gel treatments for fractures, the leak-off behavior of gelant has a great effect on the water shut-off performance of gel. Experiments were carried out using a polymer/chromium(Cr^(3+)) gel system to explore th...During gel treatments for fractures, the leak-off behavior of gelant has a great effect on the water shut-off performance of gel. Experiments were carried out using a polymer/chromium(Cr^(3+)) gel system to explore the leak-off behavior and the water shut-off performance of gel in fractured media. Results of the gelant leak-off study show that the gelant leak-off from fracture into matrix contributes to the formation of the gelant leak-off layer during the gelant injection. Moreover, because of the gradual formation of the gelant leak-off layer along fracture, the initial leak-off ratio of gelant is relatively high, but it declines and finally levels off with the increase of the injection volume. The polymer concentration of gelant has a great effect on the chromium output in fluids produced from fractures. With the increase of the polymer concentration, the chromium concentration first decreases and then increases, and the leak-off depth of gelant into matrix is gradually reduced. Results of the water shut-off study present that the decrease of the chromium concentration inside the fracture greatly reduces the water shut-off performance after the gel formation. Therefore, because of the relatively high degree of chromium leak-off, enough injection volume of gelant is essential to ensure the sufficient chromium concentration inside the fracture and to further achieve a favorable water shut-off performance. On the premise of gel strength assurance inside the fracture, the water shut-off performance of gel gradually declines with the extension of the distance from the fracture inlet, and different leak-off degrees of gelant along the fracture are responsible for this phenomenon. Therefore, a proper degree of gelant leak-off contributes to enhancing the water shut-off performance of gel for fractures.展开更多
文摘The leakage control is an important task, because it is associated with some problems such as economic loss, safety concerns, and environmental damages. The pervious methods which have already been devised for leakage detection are not only expensive and time consuming, but also have a low efficient. As a result, the global leakage detection methods such as leak detection based on simulation and calibration of the network have been considered recently. In this research, leak detection based on calibration in two hypothetical and a laboratorial networks is considered. Additionally a novel optimization method called step-by-step elimination method (SSEM) combining with a genetic algorithm (GA) is introduced to calibration and leakage detection in networks. This method step-by-step detects and eliminates the nodes that provide no contribution in leakage among uncertain parameters of calibration of a network. The proposed method initiates with an ordinary calibration for a studied network, follow by elimination of suspicious nodes among adjusted parameters, then, the network is re-calibrated. Finally the process is repeated until the numbers of unknown demands are equal to the desired numbers or the exact leakage locations and values are determined. These investigations illustrate the capability of this method for detecting the locations and sizes of leakages.
基金Project(51404280)supported by the National Natural Science Foundation of ChinaProject(2014D-5006-0203)supported by the Petro China Innovation Foundation,China
文摘During gel treatments for fractures, the leak-off behavior of gelant has a great effect on the water shut-off performance of gel. Experiments were carried out using a polymer/chromium(Cr^(3+)) gel system to explore the leak-off behavior and the water shut-off performance of gel in fractured media. Results of the gelant leak-off study show that the gelant leak-off from fracture into matrix contributes to the formation of the gelant leak-off layer during the gelant injection. Moreover, because of the gradual formation of the gelant leak-off layer along fracture, the initial leak-off ratio of gelant is relatively high, but it declines and finally levels off with the increase of the injection volume. The polymer concentration of gelant has a great effect on the chromium output in fluids produced from fractures. With the increase of the polymer concentration, the chromium concentration first decreases and then increases, and the leak-off depth of gelant into matrix is gradually reduced. Results of the water shut-off study present that the decrease of the chromium concentration inside the fracture greatly reduces the water shut-off performance after the gel formation. Therefore, because of the relatively high degree of chromium leak-off, enough injection volume of gelant is essential to ensure the sufficient chromium concentration inside the fracture and to further achieve a favorable water shut-off performance. On the premise of gel strength assurance inside the fracture, the water shut-off performance of gel gradually declines with the extension of the distance from the fracture inlet, and different leak-off degrees of gelant along the fracture are responsible for this phenomenon. Therefore, a proper degree of gelant leak-off contributes to enhancing the water shut-off performance of gel for fractures.