期刊文献+
共找到11,475篇文章
< 1 2 250 >
每页显示 20 50 100
Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area 被引量:1
1
作者 Tian Nan Chen Yue +4 位作者 Wen-geng Cao En-lin Mu Yang Ou Zhen-sheng Lin Wei Kang 《Journal of Groundwater Science and Engineering》 2023年第3期278-293,共16页
The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture ... The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing. 展开更多
关键词 water level recovery water balance Effective mining reduction Coefficient of recharge variation water level recovery contribution
下载PDF
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:2
2
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 Reservoir rock slope RAINFALL Reservoir water level fluctuation Deformation characteristics Slope failure mechanism
下载PDF
Determining safe yield and mapping water level zoning in groundwater resources of the Neishabour Plain 被引量:1
3
作者 Parisa Kazerani Ali Naghi Ziaei Kamran Davari 《Journal of Groundwater Science and Engineering》 2023年第1期47-54,共8页
Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe ... Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels. 展开更多
关键词 Hill method water level zoning maps Groundwater pumping Safe yield Groundwater crisis
下载PDF
Failure mechanism of a large-scale composite deposits caused by the water level increases
4
作者 ZHANG Xin TU Guo-xiang +3 位作者 LUO Qi-feng TANG Hao ZHANG Yu-lin LI An-run 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1369-1384,共16页
The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the L... The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations. 展开更多
关键词 Composite deposits Reservoir water level rise Physical model test Finite-differencemethod Failure mechanism
下载PDF
Evolutive Trend of Water Level in the Ebrie Lagoon by Reconstitution of the Tide Gauge Time Series in Front of the Abidjan Coastline (Côte d’Ivoire)
5
作者 Samassy Rokyatou Yéo Kokoa Chia Marie Reine Allialy +3 位作者 Tano Anoumou Rene Mondé Sylvain Sangaré Seydou Kouadio Affian 《Journal of Water Resource and Protection》 2023年第10期526-538,共13页
The latest Intergovernmental Panel on Climate Change (IPCC) report shows that sea-level rise, which has been accelerated since the 19th century resulting to the global warming, threatens coastal areas with high popula... The latest Intergovernmental Panel on Climate Change (IPCC) report shows that sea-level rise, which has been accelerated since the 19th century resulting to the global warming, threatens coastal areas with high population growth. A Global Sea Level Observing System (GLOSS) assessment highlighted the lack of data in Africa, and in Côte d’Ivoire in particular. In order to estimate the evolutionary trend of sea level along the Ivorian coast, and to draw up preventive plans to protect properties and populations, we digitized 65 years of historical tidegrams recorded in the Ebrie Lagoon, using the “Surfer” and “Nunieau” software, then processed them using “T-Tide” and “U-Tide” software. The average levels were calculated using the Demerliac filter from complete daily (day and night) recordings for providing a usable database of 31 years of hourly lagoon data from 1979 to 2015. Our results show that a mean water level in lagoon is 1.04 m. The evolutionary trend in sea level, estimated in the lagoon via the Vridi canal, during the rainy season is the most significant at 2.93 mm/year. This is followed by the dry season, with a trend of 2.89 mm/year. The flood season trend is 2.78 mm/year. This suggests that marine water inflows dominate continental inflows. Our results highlight the vulnerability of Côte d’Ivoire’s coasts to the risk of marine submersion. 展开更多
关键词 TIDE Mean water level Temporal Variability Vridi Channel Marine Submersion
下载PDF
A Water Level Forecast of Pattani River in the Southern of Thailand by Deep Learning
6
作者 Prattana Deeprasertkul Kanoksri Sarinnapakorn 《Journal of Computer and Communications》 2023年第8期14-28,共15页
Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource managem... Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource management and the short-term planning. In this paper, the water levels of the Pattani River in the Southern of Thailand have been predicted every hour of 7 days forecast. Time Series Transformer and Linear Regression were applied in this work. The results of both were the water levels forecast that had the high accuracy. Moreover, the water levels forecasting dashboard was developed for using to monitor the water levels at the Pattani River as well. 展开更多
关键词 Time Series Transformer Linear Regression water level Prediction Data Cleansing
下载PDF
Influence of Seasonal Ground Water Level Fluctuations on the Stability of the Rohingya Refugee Camp Hills of Ukhiya, Teknaf, Cox’s Bazar, Bangladesh—A Threat for Sustainable Development
7
作者 Abu Taher Mohammad Shakhawat Hossain Sheikh Jafia Jafrin +7 位作者 Purba Anindita Khan Mahmuda Khatun Tanmoy Dutta Mohammad Hasan Imam Ruma Bakali Mohammad Hossain Sayem Mohammad Shakil Mahabub Mohammad Emdadul Haque 《Journal of Geoscience and Environment Protection》 2023年第5期384-403,共20页
Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the ... Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the Kutubpalong & Balukhali Rohingya camp area. An attempt has been made to see the influence of seasonal variation of ground water level (G.W.L.) fluctuations on the stability of the eco hills and forests of Ukhiya Teknaf region. Ukhiya hills are in great danger because of cutting trees from the hill slopes and it is well established that due to recent change of climate, short term rainfall for few consecutive days during monsoon might show an influence on the factor of safety (Fs) values of the camp hill slopes. A clear G.W.L. variation between dry and wet seasons has an influence on the stability (Fs) values indicating that climate has a strong influence on the stability and threatening sustainable development. A stable or marginally stable slope might be unstable during raining and show a variation of ground water level (G.W.L.). The generation of pore water pressure (P.W.P.) is also influenced by seasonal variation of ground water level. During wet season negative P.W.P. called suction plays an important role to occur slope failures in the Ukhiya hills. Based on all calculated factor of safety values (Fs) at different locations, four (4) susceptible landslide risk zones are identified. They are very high risk (Fs = 0.18 to 0.46), high risk (Fs = 0.56 to 0.75), medium risk (Fs = 0.76 to 1.0) and marginally stable areas (Fs ≈ 1). Proper geo-engineering measures must be taken by the concerned authorizes to reduce P.W.P. during monsoon by installing rain water harvesting system, allowing sufficient drainage & other geotechnical measures to reduce the risk of slope failures in the Ukhiya hills. Based on the stability factor (Fs) at different slope locations of the camp hills, a risk map of the investigated area has been produced for the local community for their safety and to build up awareness & to motivate them to evacuate the site during monsoonal slope failures. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of landslide risks in the investigated area. 展开更多
关键词 Stability Pore water Pressure Ground water level Rain & Risk Map
下载PDF
Study on the Lowest Navigable Water Level
8
作者 Wang, Xiuying Li, Yitian 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2005年第S1期118-123,共6页
The design lowest navigable water level is a primary index to the channel grade division.But differ- ent method can get different calculated result,and that even brings contradiction to decide the navigation grade.In ... The design lowest navigable water level is a primary index to the channel grade division.But differ- ent method can get different calculated result,and that even brings contradiction to decide the navigation grade.In this paper the differences between guaranteed rate method and guaranteed rate-frequency method on the fundamental concept of guaranteed rate and the calculated result are carried out.According to the theoreti- cal expression forms of the two methods,the reason leading to the difference is an... 展开更多
关键词 design water level design lowest navigable water level guaranteed rate method guaranteed ratefrequency method
下载PDF
Characteristics of coseismic water level changes at Tangshan well for the Wenchuan MS_8.0 earthquake and its larger aftershocks
9
作者 Baojun Yin Li Ma +3 位作者 Huizhong Chen Jianping Huang Chaojun Zhang Wuxing Wang 《Earthquake Science》 CSCD 2009年第2期149-157,共9页
Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic pa... Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments. 展开更多
关键词 Wenchuan Ms8.0 earthquake Tangshan well coseismic water level variation analog water level record
下载PDF
Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions 被引量:9
10
作者 Qi FENG JiaZhong PENG +2 位作者 JianGuo LI HaiYang XI JianHua SI 《Journal of Arid Land》 SCIE 2012年第4期378-389,共12页
This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the ... This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the determination of ecological warning. The surveys suggest that soil moisture and soil salinity are the most important environmental factors in determining the distribution and changes in vegetation. The groundwater level threshold of ecological warning can be determined by using a network of groundwater depth observation sites that monitor the environmental moisture gradient as reflected by plant physiological characteristics. According to long-term field observations within the Ejin oases, the groundwater level threshold for salinity control varied between 0.5 m and 1.5 m, and the ecological warning threshold varied between 3.5 m and 4.0 m. The quantity of groundwater re- sources (renewable water resources, ecological water resources, and exploitable water resources) in arid areas can be calculated from regional groundwater level information, without localized hydrogeological data. The concept of groundwater level threshold of ecological warning was established according to water development and water re- sources supply, and available groundwater resources were calculated. The concept not only enriches and broadens the content of groundwater studies, but also helps in predicting the prospects for water resources development. 展开更多
关键词 evaluation water resources Ejin oasis ecological groundwater level groundwater level threshold of ecologicalwarning
下载PDF
Mean water level setup/setdown in the inlet-lagoon system induced by tidal action—a case study of Xincun Inlet,Hainan Island in China 被引量:7
11
作者 GONG Wenping SHEN Jian WANG Daoru 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第5期63-80,共18页
With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup... With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system. 展开更多
关键词 tidal inlet water level setup/setdown ELCIRC Hainan Island
下载PDF
Impact assessment of climate change and human activities on annual highest water level of Taihu Lake 被引量:9
12
作者 Qing-fang HU Yin-tang WANG 《Water Science and Engineering》 EI CAS 2009年第1期1-15,共15页
The annual highest water level of Taihu Lake (Zm) is very significant for flood management in the Taihu Basin. This paper first describes the inter-annual and intra-annual traits of Zm from 1956 to 2000. Then, using... The annual highest water level of Taihu Lake (Zm) is very significant for flood management in the Taihu Basin. This paper first describes the inter-annual and intra-annual traits of Zm from 1956 to 2000. Then, using the Mann-Kenall (MK) and Spearman (SP) nonparametric tests, the long-term change trends of area precipitation and pan evaporation in the Taihu Basin are determined. Meanwhile, using the Morlet wavelet transformation, the fluctuation patterns and change points of precipitation and pan evaporation are analyzed. Also, human activities in the Taihu Basin are described, including land use change and hydraulic project construction. Finally, the relationship between Zm, the water level of Taihu Lake 30 days prior to the day of Zm (Z0), and the 30-day total precipitation and pan evaporation prior to the day of Zm (P and E0, respectively) is described based on multi-linear regression equations. The relative influence of climate change and human activities on the change of Zm is quantitatively ascertained. The results demonstrate that: (1) Zm was distinctly higher during the 1980-2000 period than during the 1956-1979 period, and the 30 days prior to the day of Zm are the key phase influencing Zm every year; (2) P increased significantly at a confidence level of 95% during the 1956-2000 period, while the reverse was true for E0; (3) The relationship between Zm, P and E0 distinctly changed after 1980; (4) Climate change and human activities together caused frequent occurrences of high Zm after 1980; (5) Climate change caused a substantially greater Zm difference between the 1956-1979 and 1980-2000 periods than human activities. Climate change, as represented by P and E0, was the dominant factor raising Zm, with a relative influence ratio of 83.6%, while human activities had a smaller influence ratio of 16.4%. 展开更多
关键词 climate change human activities annual highest water level Taihu Lake
下载PDF
Model test of the influence of cyclic water level fluctuations on a landslide 被引量:5
13
作者 HE Chun-can HU Xin-li +3 位作者 XU Chu WU Shuang-shuang ZHANG Han LIU Chang 《Journal of Mountain Science》 SCIE CSCD 2020年第1期191-202,共12页
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge... Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well. 展开更多
关键词 Reservoir landslide Cyclic water level fluctuations Physical model test Landslide soil loss Adaptive ability
下载PDF
Spatial variations of tidal water level and their impact on the exposure patterns of tidal land on the central Jiangsu coast 被引量:2
14
作者 WANG Zhenyan GAO Shu HUANG Haijun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第1期79-87,共9页
The exposed area of intertidal zone varies with tidal water level changes, If intercomparisons of satellite images are adopted as a method to determine geomorphological changes of the intertidal zone in response to ac... The exposed area of intertidal zone varies with tidal water level changes, If intercomparisons of satellite images are adopted as a method to determine geomorphological changes of the intertidal zone in response to accretion or erosion processes, then the effect of water level variations must be evaluated. In this study, two Landsat TM images overpassing the central Jiangsu coastal waters on 2 January and 7 March 2002, respectively, were treated by the changing detection analysis using Image Differencing and Post-classification Comparison. The simultaneous tide level data from four tide gauge stations along the coast were used for displaying the spatial variations of water levels and determining the elevations of waterlines. The results show that the spatial variations of water levels are highly significant in the central Jiangsu coastal waters. The huge differences of tidal land exposure patterns between the two imaging times are related mainly to the spatial variations of tidal water levels, which are controlled by the differences in tidal phases for different imaging times and the spatial variations of water level over the study area at each imaging time. Under complex tidal conditions, e.g., those of the central Jiangsu coastal waters, the tide-surge model should be used to eliminate effectively the effects of water level variations on remote sensing interpretation of geomorphological changes in the intertidal zone. 展开更多
关键词 waterLINE water level variations exposure patterns central Jiangsu coast remote sensing
下载PDF
Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation 被引量:3
15
作者 Fasheng Miao Yiping Wu +2 位作者 Ákos Török Linwei Li Yang Xue 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第3期196-209,共14页
Frequent soil landslide events are recorded in the Three Gorges Reservoir area,China,making it necessary to investigate the failure mode of such riverside landslides.Geotechnical centrifugal test is considered to be t... Frequent soil landslide events are recorded in the Three Gorges Reservoir area,China,making it necessary to investigate the failure mode of such riverside landslides.Geotechnical centrifugal test is considered to be the most realistic laboratory model,which can reconstruct the required geo-stress.In this study,the Liangshuijing landslide in the Three Gorgers Reservoir area is selected for a scaled centrifugal model experiment,and a water pump system is employed to retain the rainfall condition.Using the techniques of digital photography and pore water pressure transducers,water level fluctuation is controlled,and multi-physical data are thus obtained,including the pore water pressure,earth pressure,surface displacement and deep displacement.The analysis results indicate that:Three stages were set in the test(waterflooding stage,rainfall stage and drainage stage).Seven transverse cracks with wide of 1–5 mm appeared during the model test,of which 3 cracks at the toe landslide were caused by reservoir water fluctuation,and the cracks at the middle and rear part were caused by rainfall.During rainfall process,the maximum displacement of landslide model reaches 3 cm.And the maximum deformation of the model exceeds 12 cm at the drainage stage.The failure process of the slope model can be divided into four stages:microcracks appearance and propagation stage,thrust-type failure stage,retrogressive failure stage,and holistic failure stage.When the thrust-type zone caused by rainfall was connected or even overlapped with the retrogressive failure zone caused by the drainage,the landslide would start,which displayed a typical composite failure pattern.The failure mode and deformation mechanism under the coupling actions of water level fluctuation and rainfall are revealed in the model test,which could appropriately guide for the analysis and evaluation of riverside landslides. 展开更多
关键词 Riverine landslide The Three Gorges Reservoir Centrifugal model test RAINFALL Fluctuation of water level
下载PDF
Effect of Sea Level Variation on Calculation of Design Water Level 被引量:2
16
作者 左军成 于宜法 +1 位作者 鲍献文 刘德辅 《China Ocean Engineering》 SCIE EI 2001年第3期383-394,共12页
The long-term variation and seasonal variation of sea level have a notable effect on the calculation of engineering water level. Stich an effect is first analyzed in this paper. The maximal amplitude of inter-annual a... The long-term variation and seasonal variation of sea level have a notable effect on the calculation of engineering water level. Stich an effect is first analyzed in this paper. The maximal amplitude of inter-annual anomaly of monthly mean sea level along the China coast is larger than 60 cm. Both the storm surge disaster and cold wave disaster are seasonal disasters in various regions, so the water level corresponding to the 1% of the cumulative frequency in the cumulative frequency curve of hourly water level data for different seasons in various sea areas is different from design water level., for example, the difference between them reaches maximum in June, July and August for northern sea area, and maximum in September, October and November for Southern China Sea, The hourly water level data of 19 gauge stations along the China coast are analyzed. Firstly, the annual mean sea level for every station is obtained; secondly, linear changing rates of annual mean sea level are obtained with the stochastic dynamic method; thirdly, the astronomical tide and storm surge tide are obtained by subtracting the linear fitting part from the original hourly data, finally, two distributions corresponding to the astronomical tide and wind tide are obtain ed according to whether the astronomical tide and storm tide are correlative or not. So the two check water levels are obtained with the joint probability method, The maximal difference between the two water levels of 100 years' recurrence is more than 30 cm. Both of the two check water levels have disadvantages in the use of observation data, so the mean value is suggested to be taken as the final check water level. A comparison between the two check-water levels indicates that the effect of sea level variation upon design water level and check water level is larger than 80 cm at some stations. 展开更多
关键词 engineering water level sea level stochastic dynamic residual level joint probability
下载PDF
Soil anti-scourability enhanced by herbaceous species roots in a reservoir water level fluctuation zone 被引量:3
17
作者 XU Wen-xiu YANG Ling +2 位作者 BAO Yu-hai LI Jin-lin WEI Jie 《Journal of Mountain Science》 SCIE CSCD 2021年第2期392-406,共15页
Revegetation is one of the successful approaches to soil consolidation and streambank protection in reservoir water level fluctuation zones(WLFZs).However,little research has been conducted to explore the impact of he... Revegetation is one of the successful approaches to soil consolidation and streambank protection in reservoir water level fluctuation zones(WLFZs).However,little research has been conducted to explore the impact of herbaceous species roots on soil anti-scourability during different growth stages and under different degrees of inundation in this zone.This study sampled two typical grasslands(Hemarthria compressa grassland and Xanthium sibiricum grassland)at two elevations(172 and 165 m a.s.l.)in the water level fluctuation zone(WLFZ)in the Three Gorges Reservoir(TGR)of China to quantify the changes in soil and root properties and their effects on soil anti-scourability.A simulated scouring experiment was conducted to test the soil anti-scourability in April and August of 2018.The results showed that the discrepancy in inundation duration and predominant herbaceous species was associated with a difference in root biomass between the two grasslands.The root weight density(RWD)values in the topsoil(0-10 cm)ranged from 7.31 to 13 mg cm^(-3) for the Hemarthria compressa grassland,while smaller values ranging from 0.48 to 8.61 mg cm^(-3) were observed for the Xanthium sibiricum grassland.In addition,the root biomass of the two herbs was significantly greater at 172 m a.s.l.than that at 165 m a.s.l.in the early recovery growth period(April).Both herbs can effectively improve the soil properties;the organic matter contents of the grasslands were 128.06%to 191.99%higher than that in the bare land(CK),while the increase in the water-stable aggregate ranged from 8.21%to 18.56%.Similarly,the topsoil antiscourability indices in both the herbaceous grasslands were larger than those in the CK.The correlation coefficients between the root length density(RLD),root surface area density(RSAD)and root volume density(RVD)of fine roots and the soil antiscourability index were 0.501,0.776 and 0.936,respectively.Moreover,the change in the soil antiscourability index was more sensitive to alternations in the RLD with diameters less than 0.5 mm.Overall,the present study showed that the perennial herbaceous(H.compressa)has great potential as a countermeasure to reduce or mitigate the impact of erosion in the WLFZ of the Three Gorges Reservoir. 展开更多
关键词 Herbaceous species root system Soil anti-scourability water level fluctuation zone Three Gorges Reservoir
下载PDF
Effects of water level fluctuation on sedimentary characteristics and reservoir architecture of a lake, river dominated delta 被引量:1
18
作者 张阳 邱隆伟 +2 位作者 杨保良 李际 王晔磊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2958-2971,共14页
The hydrodynamic conditions present in a river delta's formation are a highly important factor in the variation between its sedimentary regulation and characteristics. In the case of the lacustrine basin river-dom... The hydrodynamic conditions present in a river delta's formation are a highly important factor in the variation between its sedimentary regulation and characteristics. In the case of the lacustrine basin river-dominated delta, water level fluctuations and fluviation, are both important controlling factors of the sedimentary characteristics and reservoir architecture. To discuss the effects of water level fluctuation on sediment characteristics and reservoir architecture of this delta, the Fangniugou section in the east of the Songliao Basin was selected for study. Based on an outcrop investigation of the lacustrine basin river-dominated delta, combining with an analysis of the major and trace chemical elements in the sediments to determine the relative water depth, through architecture bounding surfaces and lithofacies division, sedimentary microfacies recognition and architectural element research, this work illustrated the effects of water level fluctuation on the reservoir architecture and established sedimentary models for the lacustrine basin river-dominated delta under various water level conditions. The results show that there are 8 lithofacies in the Fangniugou section. The fan delta front, which is the main object of this study, develops four sedimentary microfacies that include the underwater distributary channel, river mouth bar, sheet sand and interdistributary bay. The effects of water level fluctuation on different orders geographic architecture elements are respectively reflected in the vertical combination of the composite sand bodies, the plane combination of the single sand bodies, the particle size changes in the vertical of hyperplasia in the single sand body, the coset and lamina. In the case of the sand body development of the petroliferous basin, varying water level conditions and research locations resulted in significant variation in the distribution and combination of the sand bodies in the lacustrine basin. 展开更多
关键词 water level fluctuation sedimentary characteristics reservoir architecture river dominated delta lacustrine basin
下载PDF
Influence of the 2011 Mw9. 0 Japan earthquake on groundwater levels in Chinese mainland 被引量:1
19
作者 Sun Xiaolong Liu Yaowei Ren Hongwei 《Geodesy and Geodynamics》 2011年第4期33-39,共7页
This paper gives a description of the co-seismic and post-seismic groundwater level changes induced in Chinese mainland by the 2011 Mw9.0 Japan earthquake, and the corresponding stress changes calculated on the assump... This paper gives a description of the co-seismic and post-seismic groundwater level changes induced in Chinese mainland by the 2011 Mw9.0 Japan earthquake, and the corresponding stress changes calculated on the assumption of linear elasticity. The result shows that the main types of changes were oscillations and step increases. The North-South Seismic Belt and the Shanxi Seismic Belt were the main areas affected by the earthquake. 展开更多
关键词 Chinese mainland water level of the well co-seismic effects post-seismic effects Mw9. 0 Japan earthquake
下载PDF
A general multi-objective programming model for minimum ecological flow or water level of inland water bodies 被引量:1
20
作者 Song Hao SHANG 《Journal of Arid Land》 SCIE CSCD 2015年第2期166-176,共11页
Assessment of ecological flow or water level for water bodies is important for the protection of de- graded or degrading ecosystems caused by water shortage in arid regions, and it has become a key issue in water reso... Assessment of ecological flow or water level for water bodies is important for the protection of de- graded or degrading ecosystems caused by water shortage in arid regions, and it has become a key issue in water resources planning. In the past several decades, many methods have been proposed to assess ecological flow for rivers and ecological water level for lakes or wetlands. To balance water uses by human and ecosystems, we proposed a general multi-objective programming model to determine minimum ecological flow or water level for inland water bodies, where two objectives are water index for human and habitat index for ecosystems, respectively Using the weighted sum method for multi-objective optimization, minimum ecological flow or water level can be determined from the breakpoint in the water index-habitat index curve, which is similar to the slope method to de- termine minimum ecological flow from wetted perimeter-discharge curve. However, the general multi-objective programming model is superior to the slope method in its physical meaning and calculation method. This model provides a general analysis method for ecological water uses of different inland water bodies, and can be used to define minimum ecological flow or water level by choosing appropriate water and habitat indices. Several com- monly used flow or water level assessment methods were found to be special cases of the general model, including the wetted perimeter method and the multi-objective physical habitat simulation method for ecological river flow, the inundated forest width method for regeneration flow of floodplain forest and the lake surface area method for eco- logical lake level. These methods were applied to determine minimum ecological flow or water level for two repre- sentative rivers and a lake in northern Xinjiang of China, including minimum ecological flow for the Ertix River, minimum regeneration flow for floodplain forest along the midstream of Kaxgar River, and minimum ecological lake level for the Ebinur Lake. The results illustrated the versatility of the general model, and can provide references for water resources planning and ecosystem protection for these rivers and lake. 展开更多
关键词 minimum ecological flow minimum ecological water level wetted perimeter method physical habitat simulation method inundated forest width method lake surface area method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部