The Japanese government’s unilateral decision to discharge the nuclear-contaminated water from the Fukushima nuclear power plant into the ocean has caused immense nuclear safety risks.Monitoring the unclear contamina...The Japanese government’s unilateral decision to discharge the nuclear-contaminated water from the Fukushima nuclear power plant into the ocean has caused immense nuclear safety risks.Monitoring the unclear contaminated water is a starting point to combat these risks and seek remedies for the rights and interests of all concerned parties.The establishment of a mechanism for international cooperation in this respect is necessary to handle the risks of the Fukushima nuclear-contaminated water and to lay the foundation of a framework for tackling any future disposal of nuclear-contaminated water following Japan’s example.At present,the international legal systems in the spheres of nuclear safety and security,marine environmental protection,and other areas,as well as the questioning of the monitoring reports of the International Atomic Energy Agency(IAEA)by the relevant parties,the monitoring practices of historical nuclear accidents,and numerous radioactivity monitoring mechanisms have provided the institutional and practical basis for constructing such a mechanism.The mechanism can be promoted by the IAEA through its existing mechanisms or be jointly initiated by China,the Russian Federation,the Republic of Korea,the Democratic People’s Republic of Korea,and the Pacific Island countries,among other stakeholders.Specifically,this mechanism should consist of three levels:first,the framework of the basic legal system,including the cooperative principles of national sovereignty,interest-relatedness,and procedural fairness,and the signing of the Framework Convention on the Monitoring of Fukushima’s nuclear-contaminated water and its Optional Protocol;second,the organizational structure and its responsibilities,which may include the Conference of Parties as the decision-making body,the Secretariat as the central coordinating body,and the monitoring committees in various fields as specific implementing agencies;and third,specific administrative arrangements,which involve the standardization of monitoring,the management system of monitoring networks and stations,the rules for monitoring procedures,and the rules for the utilization of the monitoring data,etc.With the urgent need for the scientific and fair monitoring of Fukushima’s nuclear-contaminated water,China,as a stakeholder country,can promote the establishment of such a mechanism for monitoring nuclear-contaminated water through the following paths:①It is necessary to clarify the factors affecting the construction of an international cooperation mechanism for monitoring nuclear-contaminated water so as to ascertain the standpoints of the stakeholders,claims of their interests,contents of their cooperation,and the relevant international relations.②On the basis of existing practices,China should consider improving the monitoring mechanism to cope with the risks of the discharge of Fukushima’s nuclear-contaminated water by formulating targeted policies and systems,setting up specialized monitoring institutions,and establishing a systematic monitoring network system.③This is an effective way for China to actively promote the participation of stakeholders in the construction of an international cooperation mechanism for monitoring nuclear-contaminated water in Fukushima by further innovating the dissemination mechanism to address the risk of Fukushima’s nuclear-contaminated water discharging into the sea and facilitating the identification of issues for international cooperation in monitoring Fukushima’s nuclear-contaminated water based on the concept of a community with a shared future for mankind.展开更多
At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the p...At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality.展开更多
Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are d...Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.展开更多
The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laborat...The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laboratories. It plays an impor- tant role in ensuring the accuracy, integrity and comparability of monitoring data. In this paper, the positive role of proficiency testing in the water quality monitoring was analyzed. In addition, how to improve the water quality monitoring capacity and the quality management level of laboratories through the proficiency testing was also discussed.展开更多
Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate ...Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate data to make decisions on water resource descriptions,identify real and emergent issues involving water pollution,formulate priorities,and plan for water quality management.The regularly considered parameters when conducting water quality monitoring are turbidity,pH,temperature,conductivity,dissolved oxygen,chemical oxygen demand,biochemical oxygen demand,ammonia,and metal ions.The usual method employed in capturing these water parameters is the manual collection and sending of samples to a laboratory for detection and analysis.However,this method is impractical in the long run because it is laborious and consumes a considerable amount of human resources.Sensors integrated into a mobile phone application interface can address this issue.This paper aims to design and implement an Internet of Things-based system comprising pH,temperature,and turbidity sensors,which are all integrated into a mobile phone application interface for a water monitoring system.This project utilizes the Bluetooth Standard(IEEE 802.15.1)for communication/transfer of data,while the water quality monitoring system relies on the pH,turbidity,and temperature of the test water.展开更多
A combined approach of target,suspected target and non-target screening using liquid chromatography-high-resolution mass spectrometry(LC-HRMS)was used to develop a new concept for water monitoring.With the current LC-...A combined approach of target,suspected target and non-target screening using liquid chromatography-high-resolution mass spectrometry(LC-HRMS)was used to develop a new concept for water monitoring.With the current LC-MS/MS target approach for water monitoring,all targets can be quantified,but no additional information about the sample is collected.With the new concept,it is possible to detect 97%of the target compounds with a simplified quantification method without losing accuracy.Furthermore,a suspect target screening can be performed to get broader qualitative information about the water samples.In addition,the non-target screening offers the possibility to identify unknown micropollutants.All three evaluation steps depend on the same analytical measurement so that a lot of measurement and quality assurance effort can be saved.This concept could change water monitoring and assessment,and make it much more efficiently without losing information.There is a chance to measure less but learn more about the water bodies.展开更多
Indonesia is a producer in the fisheries sector,with production reaching 14.8 million tons in 2022.The production potential of the fisheries sector can be optimally optimized through aquaculture management.One of the ...Indonesia is a producer in the fisheries sector,with production reaching 14.8 million tons in 2022.The production potential of the fisheries sector can be optimally optimized through aquaculture management.One of the most important issues in aquaculture management is how to efficiently control the fish pond water conditions.IoT technology can be applied to support a fish pond aquaculture monitoring system,especially for catfish species(Siluriformes),in real-time and remotely.One of the technologies that can provide this convenience is the IoT.The problem of this study is how to integrate IoT devices with Firebase’s cloud data system to provide reliable and precise data,which makes it easy for fish cultivators to monitor fishpond conditions in real time and remotely.The IoT aquaculture fishpond monitoring use 3 parameters:(1)water temperature;(2)pHwater level;and(3)turbidity level of pond water.IoT devices use temperature sensors,pH sensors,and turbidity sensors,which are integrated with a microcontroller and Wi-Fi module.Data from sensor readings are sent to the Firebase cloud via theWi-Fi module so that it can be accessed in real time by end users with an Androidbased mobile app.The findings are(1)the IoT-based aquaculture monitoring system device has a low error rate in measuring temprature,pH,and turbidity with a percentage of 1.75%,1.94% and 9.78%,respectively.Overall,the total average error of the three components is 4.49%;(2)in cost analysis,IoT-based has a cost-effectiveness of 94.21% compared to labor costs.An IoT-based aquaculture monitoring system using Firebase can be effectively used as a technology for monitoring fish pond conditions in real-time and remotely for fish cultivators that contribute to providing an IoT-based aquaculture monitoring system that produces valid data,is precise,is easy to implement,and is a low-cost system.展开更多
Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensiona...Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensional excitation-emission matrix (3DEEM) spectra in the laboratory have been conducted. Using parallel factor analysis (PARAFAC) model, three components of colored dissolved organic matter (CDOM) have been identified successfully, based on the analysis of 3DEEM data. The characteristics of the three components also have been described by comparing them to some components of CDOM, identified in earlier researches. Meanwhile, spatial variations of concentration for the three components in Taihu Lake have been analyzed, and the result indicates that the concentration of component 1 depends more on the situation of wastewater pollution and can be used as the indicator of wastewater pollution. The relationship between the concentrations of the three components and results of the wet chemical analysis show that none of the three components can be used as indicators of gross organic matter in water. However, the concentrations of all the three components have obvious linear relationships with the BOD5 value, especially for component 1 (r = 0.72878). Finally, the potential applications of the composition analysis based on 3DEEM and PARAFAC model in water quality monitoring have been illuminated.展开更多
China Marine Surveillance Force was equipped with modern aerial equipments for marine lawexecute with the advantage of functioning agilely at a large scale of surveillance coverage, providing powerful all-round safegu...China Marine Surveillance Force was equipped with modern aerial equipments for marine lawexecute with the advantage of functioning agilely at a large scale of surveillance coverage, providing powerful all-round safeguard, which is of benefit to the harmonious and sustainable development of coastal economy. Onboard the planes, three kinds of remote sensing sensors have been installed, including a marine airborne multi-spectrum scanner (MAMS), an optical-electronic platform, and an airborne hyper-spectral system AISA+. The specifications of remote sensing platforms were introduced briefly first, then examples of water quality monitoring by airborne remote sensing were presented, including the monitoring in coastal suspended material, oil-spill and abnormal warm water, etc.展开更多
Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed...Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists of plankton population from echo intensity, the effect of bubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carried out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan. During the observation, water temperature near the bottom showed remarkable falls with interval of about 5-7 d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination of upwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.展开更多
Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring syste...Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring systems,however,generally focus only on water quality data collection,ignoring data analysis and data mining.In addition,some dirty data and data loss may occur due to power failures or transmission failures,further affecting data analysis and its application.In order to meet these needs,by using Internet of things,cloud computing,and big data technologies,we designed and implemented a water quality monitoring data intelligent service platform in C#and PHP language.The platform includes monitoring point addition,monitoring point map labeling,monitoring data uploading,monitoring data processing,early warning of exceeding the standard of monitoring indicators,and other functions modules.Using this platform,we can realize the automatic collection of water quality monitoring data,data cleaning,data analysis,intelligent early warning and early warning information push,and other functions.For better security and convenience,we deployed the system in the Tencent Cloud and tested it.The testing results showed that the data analysis platform could run well and will provide decision support for water resource protection.展开更多
Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Fi...Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Five-year Plan" period, the changing rules of the water quality were studied to provide scientific references for the improvement of drinking water safety of urban and rural residents and drinking water quality. The re- sults show that the water quality of centralized drinking water sources in Kaixian County improved year by year during the "Twelfth Five-year Plan" period, and most monitoring sites with water quality exceeding the standard are distributed in reservoirs. Total phosphorus, total nitrogen, chemical oxygen demand, and permanganate index exceeded the standard obviously. Main pollution sources are domestic pollution and non-point source pol- lution caused by excessive discharge of nitrogen, phosphorus and organic pollutants. To improve drinking water quality, it is suggested that some towns can get drinking water from other reservoirs, surface water or underground water with better quality instead of previous reservoirs with water quality exceeding the standard, and the control of non-point source pollution should be enhanced.展开更多
Water resources are one of the basic resources for human survival,and water protection has been becoming a major problem for countries around the world.However,most of the traditional water quality monitoring research...Water resources are one of the basic resources for human survival,and water protection has been becoming a major problem for countries around the world.However,most of the traditional water quality monitoring research work is still concerned with the collection of water quality indicators,and ignored the analysis of water quality monitoring data and its value.In this paper,by adopting Laravel and AdminTE framework,we introduced how to design and implement a water quality data visualization platform based on Baidu ECharts.Through the deployed water quality sensor,the collected water quality indicator data is transmitted to the big data processing platform that deployed on Tencent Cloud in real time through the 4G network.The collected monitoring data is analyzed,and the processing result is visualized by Baidu ECharts.The test results showed that the designed system could run well and will provide decision support for water resource protection.展开更多
This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7...This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7.3 and 7.8,slightly alkaline;the COD content of Xinli River is about 140-163 mg/L,and the COD pollution is serious in some water sections;the ammonia nitrogen content of Xinli River is 0.2-2.17 mg/L,the total nitrogen content is about 0.799-1.3 mg/L,the total phosphorus content is about 0.54-0.92 mg/L,suggesting that the water eutrophication is very serious.Due to the large amount of domestic sewage discharged into Xinli River without treatment,slow circulation of river water and other factors,the eutrophication is serious in the urban watercourse.展开更多
Many countries are paying more and more attention to the protection of water resources at present,and how to protect water resources has received extensive attention from society.Water quality monitoring is the key wo...Many countries are paying more and more attention to the protection of water resources at present,and how to protect water resources has received extensive attention from society.Water quality monitoring is the key work to water resources protection.How to efficiently collect and analyze water quality monitoring data is an important aspect of water resources protection.In this paper,python programming tools and regular expressions were used to design a web crawler for the acquisition of water quality monitoring data from Global Freshwater Quality Database(GEMStat)sites,and the multi-thread parallelism was added to improve the efficiency in the process of downloading and parsing.In order to analyze and process the crawled water quality data,Pandas and Pyecharts are used to visualize the water quality data to show the intrinsic correlation and spatiotemporal relationship of the data.展开更多
This paper assesses the quality of Daliao river through Liaohe Park based on the model of GAM for water quality analysis and the monitoring data from 2006 to 2011.The results showed that the value of pH per year tende...This paper assesses the quality of Daliao river through Liaohe Park based on the model of GAM for water quality analysis and the monitoring data from 2006 to 2011.The results showed that the value of pH per year tended to the average; the DO in 2011 was much higher than that in other years, and the DO in 2006 .was lower than the standard value; the quality risk in six sections was still higher than the standard value in 2007, which was caused by the high concentrations of COD. However, the value of ammonia nitrogen changes was only 40% related to DO and COD.展开更多
DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxi- cological stud...DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxi- cological study and environmental risk assessment. In this article, main types of DNA damage caused by pollut- ants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.展开更多
Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is impor...Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is important to predict disaster.However,there is still a lack of effective monitoring methods,so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment.This study focuses on discussion of sensitivity of pore water pressure monitoring data,as well as typical changing characteristics and mechanisms of excess pore water pressure corresponding to crack generation,gasbag formation and gas release.It was found that the value of excess pore water pressure in sediments is negatively correlated with vertical distance between sensors and gas source,and the evolution of gasbag forming and dissipation has a good corresponding relationship with the change of excess pore water pressure.Gasbag formation process is divided into three stages:transverse crack development,longitudinal cavity expansion,and oblique crack development.Formation of gasbag begins with the transverse crack at the interface of coarse-fine sediments while excess pore water pressure attenuates rapidly and then drops,pressure remains almost unchanged when cavity expanses longitudinally,oblique crack appeared in final stage of gasbag evolution while excess pore water pressure accumulated and dissipated again.The variation curve of excess pore water pressure in gas release stage has saw-tooth fluctuation characteristics,and the value and time of pressure accumulation are also fluctuating,indicating the uncertainty and non-uniqueness of gas migration channels in sediments.展开更多
European Community policy concerning water is placing increasing demands on the acquisition of information about the quality of aquatic environments. The cost of this information has led to a reflection on the rationa...European Community policy concerning water is placing increasing demands on the acquisition of information about the quality of aquatic environments. The cost of this information has led to a reflection on the rationalization of monitoring networks and, therefore, on the economic value of information produced by these networks. The aim of this article is to contribute to this reflection. To do so, we used the Bayesian framework to define the value of additional information in relation to the following three parameters: initial assumptions (prior probabilities) on the states of nature, costs linked to a poor decision (error costs) and accuracy of additional information. We then analyzed the impact of these parameters on this value, particularly the combined role of prior probabilities and error costs that increased or decreased the value of information depending on the initial uncertainty level. We then illustrated the results using a case study of a stream in the Bas-Rhin department in France.展开更多
Thunniform swimmers(tuna)have a swinging narrow sequence stalk and a moon-shaped tail fin,which performs poorly at slow speed,higher acceleration and turning maneuverability.In most cases,faster speed and higher maneu...Thunniform swimmers(tuna)have a swinging narrow sequence stalk and a moon-shaped tail fin,which performs poorly at slow speed,higher acceleration and turning maneuverability.In most cases,faster speed and higher maneuverability are mutually rejection for most marine creatures and their robotic opponents.This paper presents a novel hybrid tuna-like swimming robot for aquaculture water quality monitoring,which interleaves faster speed and higher maneuverability.The robotic prototype emphasizes on streamlining and enhanced maneuverability mechanism designs in conjunction with a narrow caudal propeller to the tail.The innovative design endows the robot to easily execute the multi-mode swimming gait,including forward swimming,turning,diving/surfacing.The capabilities of our robot are validated through a series of indoor swimming pool and field breeding ponds.The robotic fish can achieve a maximum speed up to about 1.16 m/s and a minimum turning radius less than 0.46 Body Lengths(BL)and its maximum turning speed can reach 78.6∘/s.Due to its high speed,maneuverability and relatively small size,the robotic fish shed light on intelligent monitoring in complex aquatic environments.展开更多
基金funded by the National Social Science Fund of China[Grant No.20&ZD162].
文摘The Japanese government’s unilateral decision to discharge the nuclear-contaminated water from the Fukushima nuclear power plant into the ocean has caused immense nuclear safety risks.Monitoring the unclear contaminated water is a starting point to combat these risks and seek remedies for the rights and interests of all concerned parties.The establishment of a mechanism for international cooperation in this respect is necessary to handle the risks of the Fukushima nuclear-contaminated water and to lay the foundation of a framework for tackling any future disposal of nuclear-contaminated water following Japan’s example.At present,the international legal systems in the spheres of nuclear safety and security,marine environmental protection,and other areas,as well as the questioning of the monitoring reports of the International Atomic Energy Agency(IAEA)by the relevant parties,the monitoring practices of historical nuclear accidents,and numerous radioactivity monitoring mechanisms have provided the institutional and practical basis for constructing such a mechanism.The mechanism can be promoted by the IAEA through its existing mechanisms or be jointly initiated by China,the Russian Federation,the Republic of Korea,the Democratic People’s Republic of Korea,and the Pacific Island countries,among other stakeholders.Specifically,this mechanism should consist of three levels:first,the framework of the basic legal system,including the cooperative principles of national sovereignty,interest-relatedness,and procedural fairness,and the signing of the Framework Convention on the Monitoring of Fukushima’s nuclear-contaminated water and its Optional Protocol;second,the organizational structure and its responsibilities,which may include the Conference of Parties as the decision-making body,the Secretariat as the central coordinating body,and the monitoring committees in various fields as specific implementing agencies;and third,specific administrative arrangements,which involve the standardization of monitoring,the management system of monitoring networks and stations,the rules for monitoring procedures,and the rules for the utilization of the monitoring data,etc.With the urgent need for the scientific and fair monitoring of Fukushima’s nuclear-contaminated water,China,as a stakeholder country,can promote the establishment of such a mechanism for monitoring nuclear-contaminated water through the following paths:①It is necessary to clarify the factors affecting the construction of an international cooperation mechanism for monitoring nuclear-contaminated water so as to ascertain the standpoints of the stakeholders,claims of their interests,contents of their cooperation,and the relevant international relations.②On the basis of existing practices,China should consider improving the monitoring mechanism to cope with the risks of the discharge of Fukushima’s nuclear-contaminated water by formulating targeted policies and systems,setting up specialized monitoring institutions,and establishing a systematic monitoring network system.③This is an effective way for China to actively promote the participation of stakeholders in the construction of an international cooperation mechanism for monitoring nuclear-contaminated water in Fukushima by further innovating the dissemination mechanism to address the risk of Fukushima’s nuclear-contaminated water discharging into the sea and facilitating the identification of issues for international cooperation in monitoring Fukushima’s nuclear-contaminated water based on the concept of a community with a shared future for mankind.
基金the National Natural Science Foundation of China(No.51775185)Natural Science Foundation of Hunan Province(No.2022JJ90013)+1 种基金Intelligent Environmental Monitoring Technology Hunan Provincial Joint Training Base for Graduate Students in the Integration of Industry and Education,and Hunan Normal University University-Industry Cooperation.the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open Project,Grant Number 20181901CRP04.
文摘At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province of China(Project No.2023NSFSC0008)+1 种基金Uranium Geology Program of China Nuclear Geology(No.202205-6)the Sichuan Science and Technology Program(No.2021JDTD0018)。
文摘Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.
基金Supported by Special Scientific Research Fund of Public Welfare Profession of Ministry of Water Resources(201101007)~~
文摘The monitoring data is undoubtedly important to the water quality monitor- ing department. The proficiency testing is an important way to improve the monitor- ing capacity and enhance the quality management of laboratories. It plays an impor- tant role in ensuring the accuracy, integrity and comparability of monitoring data. In this paper, the positive role of proficiency testing in the water quality monitoring was analyzed. In addition, how to improve the water quality monitoring capacity and the quality management level of laboratories through the proficiency testing was also discussed.
基金This work was supported by SUT Research and Development Funds and by Thailand Science Research and Innovation(TSRI).Also,this work was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University,Saudi Arabia.In addition,support by the Taif University Researchers Supporting Project number(TURSP-2020/77),Taif University,Taif,Saudi Arabia.
文摘Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate data to make decisions on water resource descriptions,identify real and emergent issues involving water pollution,formulate priorities,and plan for water quality management.The regularly considered parameters when conducting water quality monitoring are turbidity,pH,temperature,conductivity,dissolved oxygen,chemical oxygen demand,biochemical oxygen demand,ammonia,and metal ions.The usual method employed in capturing these water parameters is the manual collection and sending of samples to a laboratory for detection and analysis.However,this method is impractical in the long run because it is laborious and consumes a considerable amount of human resources.Sensors integrated into a mobile phone application interface can address this issue.This paper aims to design and implement an Internet of Things-based system comprising pH,temperature,and turbidity sensors,which are all integrated into a mobile phone application interface for a water monitoring system.This project utilizes the Bluetooth Standard(IEEE 802.15.1)for communication/transfer of data,while the water quality monitoring system relies on the pH,turbidity,and temperature of the test water.
文摘A combined approach of target,suspected target and non-target screening using liquid chromatography-high-resolution mass spectrometry(LC-HRMS)was used to develop a new concept for water monitoring.With the current LC-MS/MS target approach for water monitoring,all targets can be quantified,but no additional information about the sample is collected.With the new concept,it is possible to detect 97%of the target compounds with a simplified quantification method without losing accuracy.Furthermore,a suspect target screening can be performed to get broader qualitative information about the water samples.In addition,the non-target screening offers the possibility to identify unknown micropollutants.All three evaluation steps depend on the same analytical measurement so that a lot of measurement and quality assurance effort can be saved.This concept could change water monitoring and assessment,and make it much more efficiently without losing information.There is a chance to measure less but learn more about the water bodies.
基金supported by the Department of Electrical Engineering at the National Chin-Yi University of Technology.
文摘Indonesia is a producer in the fisheries sector,with production reaching 14.8 million tons in 2022.The production potential of the fisheries sector can be optimally optimized through aquaculture management.One of the most important issues in aquaculture management is how to efficiently control the fish pond water conditions.IoT technology can be applied to support a fish pond aquaculture monitoring system,especially for catfish species(Siluriformes),in real-time and remotely.One of the technologies that can provide this convenience is the IoT.The problem of this study is how to integrate IoT devices with Firebase’s cloud data system to provide reliable and precise data,which makes it easy for fish cultivators to monitor fishpond conditions in real time and remotely.The IoT aquaculture fishpond monitoring use 3 parameters:(1)water temperature;(2)pHwater level;and(3)turbidity level of pond water.IoT devices use temperature sensors,pH sensors,and turbidity sensors,which are integrated with a microcontroller and Wi-Fi module.Data from sensor readings are sent to the Firebase cloud via theWi-Fi module so that it can be accessed in real time by end users with an Androidbased mobile app.The findings are(1)the IoT-based aquaculture monitoring system device has a low error rate in measuring temprature,pH,and turbidity with a percentage of 1.75%,1.94% and 9.78%,respectively.Overall,the total average error of the three components is 4.49%;(2)in cost analysis,IoT-based has a cost-effectiveness of 94.21% compared to labor costs.An IoT-based aquaculture monitoring system using Firebase can be effectively used as a technology for monitoring fish pond conditions in real-time and remotely for fish cultivators that contribute to providing an IoT-based aquaculture monitoring system that produces valid data,is precise,is easy to implement,and is a low-cost system.
基金Project supported by the Knowledge Innovation Project of ChineseAcademy of Sciences (No. KGCX2-SW-111).
文摘Taihu Lake is one of the five biggest lakes in China. Surface water samples from 26 sampling sites of Taihu Lake were collected. Furthermore wet chemical analysis (CODCr and BOD5) and measurement of three dimensional excitation-emission matrix (3DEEM) spectra in the laboratory have been conducted. Using parallel factor analysis (PARAFAC) model, three components of colored dissolved organic matter (CDOM) have been identified successfully, based on the analysis of 3DEEM data. The characteristics of the three components also have been described by comparing them to some components of CDOM, identified in earlier researches. Meanwhile, spatial variations of concentration for the three components in Taihu Lake have been analyzed, and the result indicates that the concentration of component 1 depends more on the situation of wastewater pollution and can be used as the indicator of wastewater pollution. The relationship between the concentrations of the three components and results of the wet chemical analysis show that none of the three components can be used as indicators of gross organic matter in water. However, the concentrations of all the three components have obvious linear relationships with the BOD5 value, especially for component 1 (r = 0.72878). Finally, the potential applications of the composition analysis based on 3DEEM and PARAFAC model in water quality monitoring have been illuminated.
基金supported by the NO. 2007402 Science Foundation of SOAthe scientific research fund NO.JG0719 of the Second Institute of Oceanography, SOA+1 种基金special funds for scientific research on public cause (NO. 200805028)China "908" Project under contract No.908-03-02-08.
文摘China Marine Surveillance Force was equipped with modern aerial equipments for marine lawexecute with the advantage of functioning agilely at a large scale of surveillance coverage, providing powerful all-round safeguard, which is of benefit to the harmonious and sustainable development of coastal economy. Onboard the planes, three kinds of remote sensing sensors have been installed, including a marine airborne multi-spectrum scanner (MAMS), an optical-electronic platform, and an airborne hyper-spectral system AISA+. The specifications of remote sensing platforms were introduced briefly first, then examples of water quality monitoring by airborne remote sensing were presented, including the monitoring in coastal suspended material, oil-spill and abnormal warm water, etc.
文摘Three kind of application of ADCP is reported for long-term monitoring in coastal sea.(1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists of plankton population from echo intensity, the effect of bubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carried out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan. During the observation, water temperature near the bottom showed remarkable falls with interval of about 5-7 d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination of upwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.
基金the National Natural Science Foundation of China(No.61304208)Scientific Research Fund of Hunan Province Education Department(18C0003)+5 种基金Researchproject on teaching reform in colleges and universities of Hunan Province Education Department(20190147)Changsha City Science and Technology Plan Program(K1501013-11)Hunan NormalUniversity University-Industry Cooperation.This work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data PropertyUniversities of Hunan ProvinceOpen projectgrant number 20181901CRP04.
文摘Water is one of the basic resources for human survival.Water pollution monitoring and protection have been becoming a major problem for many countries all over the world.Most traditional water quality monitoring systems,however,generally focus only on water quality data collection,ignoring data analysis and data mining.In addition,some dirty data and data loss may occur due to power failures or transmission failures,further affecting data analysis and its application.In order to meet these needs,by using Internet of things,cloud computing,and big data technologies,we designed and implemented a water quality monitoring data intelligent service platform in C#and PHP language.The platform includes monitoring point addition,monitoring point map labeling,monitoring data uploading,monitoring data processing,early warning of exceeding the standard of monitoring indicators,and other functions modules.Using this platform,we can realize the automatic collection of water quality monitoring data,data cleaning,data analysis,intelligent early warning and early warning information push,and other functions.For better security and convenience,we deployed the system in the Tencent Cloud and tested it.The testing results showed that the data analysis platform could run well and will provide decision support for water resource protection.
文摘Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Five-year Plan" period, the changing rules of the water quality were studied to provide scientific references for the improvement of drinking water safety of urban and rural residents and drinking water quality. The re- sults show that the water quality of centralized drinking water sources in Kaixian County improved year by year during the "Twelfth Five-year Plan" period, and most monitoring sites with water quality exceeding the standard are distributed in reservoirs. Total phosphorus, total nitrogen, chemical oxygen demand, and permanganate index exceeded the standard obviously. Main pollution sources are domestic pollution and non-point source pol- lution caused by excessive discharge of nitrogen, phosphorus and organic pollutants. To improve drinking water quality, it is suggested that some towns can get drinking water from other reservoirs, surface water or underground water with better quality instead of previous reservoirs with water quality exceeding the standard, and the control of non-point source pollution should be enhanced.
基金This work is supported by National Natural Science Foundation of China 61304208by the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property Open Fund Project 20181901CRP04+2 种基金by the Scientific Research Fund of Hunan Province Education Department 18C0003by the Research Project on Teaching Reform in General Colleges and Universities,Hunan Provincial Education Department 20190147by the Hunan Normal University Ungraduated Innovation and Entrepreneurship Training Plan Project 2019127.
文摘Water resources are one of the basic resources for human survival,and water protection has been becoming a major problem for countries around the world.However,most of the traditional water quality monitoring research work is still concerned with the collection of water quality indicators,and ignored the analysis of water quality monitoring data and its value.In this paper,by adopting Laravel and AdminTE framework,we introduced how to design and implement a water quality data visualization platform based on Baidu ECharts.Through the deployed water quality sensor,the collected water quality indicator data is transmitted to the big data processing platform that deployed on Tencent Cloud in real time through the 4G network.The collected monitoring data is analyzed,and the processing result is visualized by Baidu ECharts.The test results showed that the designed system could run well and will provide decision support for water resource protection.
基金Supported by Research Fund of Binzhou University in 2017(BZXYG1712)Shandong Provincial Soft Science Research Program(2017RKB01166)
文摘This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7.3 and 7.8,slightly alkaline;the COD content of Xinli River is about 140-163 mg/L,and the COD pollution is serious in some water sections;the ammonia nitrogen content of Xinli River is 0.2-2.17 mg/L,the total nitrogen content is about 0.799-1.3 mg/L,the total phosphorus content is about 0.54-0.92 mg/L,suggesting that the water eutrophication is very serious.Due to the large amount of domestic sewage discharged into Xinli River without treatment,slow circulation of river water and other factors,the eutrophication is serious in the urban watercourse.
基金This research was funded by the National Natural Science Foundation of China(No.51775185)Scientific Research Fund of Hunan Province Education Department(18C0003)+2 种基金Research project on teaching reform in colleges and universities of Hunan Province Education Department(20190147)Innovation and Entrepreneurship Training Program for College Students in Hunan Province(2021-1980)Hunan Normal University University-Industry Cooperation.This work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open project,Grant Number 20181901CRP04.
文摘Many countries are paying more and more attention to the protection of water resources at present,and how to protect water resources has received extensive attention from society.Water quality monitoring is the key work to water resources protection.How to efficiently collect and analyze water quality monitoring data is an important aspect of water resources protection.In this paper,python programming tools and regular expressions were used to design a web crawler for the acquisition of water quality monitoring data from Global Freshwater Quality Database(GEMStat)sites,and the multi-thread parallelism was added to improve the efficiency in the process of downloading and parsing.In order to analyze and process the crawled water quality data,Pandas and Pyecharts are used to visualize the water quality data to show the intrinsic correlation and spatiotemporal relationship of the data.
基金supported by Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education (KL-PPEC-2010-1)
文摘This paper assesses the quality of Daliao river through Liaohe Park based on the model of GAM for water quality analysis and the monitoring data from 2006 to 2011.The results showed that the value of pH per year tended to the average; the DO in 2011 was much higher than that in other years, and the DO in 2006 .was lower than the standard value; the quality risk in six sections was still higher than the standard value in 2007, which was caused by the high concentrations of COD. However, the value of ammonia nitrogen changes was only 40% related to DO and COD.
基金Supported by the Youth Grant of the National High Technology Re-search and Development Program(2001AA649040) from the Ministry of Science and Technology (MOST) P. R. China and the Key Project from the Ministry of Education (02132)
文摘DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxi- cological study and environmental risk assessment. In this article, main types of DNA damage caused by pollut- ants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.
基金The National Key Research and Development Program of China under contract No.2017YFC0307701the National Natural Science Foundation of China under contract No.41977234。
文摘Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is important to predict disaster.However,there is still a lack of effective monitoring methods,so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment.This study focuses on discussion of sensitivity of pore water pressure monitoring data,as well as typical changing characteristics and mechanisms of excess pore water pressure corresponding to crack generation,gasbag formation and gas release.It was found that the value of excess pore water pressure in sediments is negatively correlated with vertical distance between sensors and gas source,and the evolution of gasbag forming and dissipation has a good corresponding relationship with the change of excess pore water pressure.Gasbag formation process is divided into three stages:transverse crack development,longitudinal cavity expansion,and oblique crack development.Formation of gasbag begins with the transverse crack at the interface of coarse-fine sediments while excess pore water pressure attenuates rapidly and then drops,pressure remains almost unchanged when cavity expanses longitudinally,oblique crack appeared in final stage of gasbag evolution while excess pore water pressure accumulated and dissipated again.The variation curve of excess pore water pressure in gas release stage has saw-tooth fluctuation characteristics,and the value and time of pressure accumulation are also fluctuating,indicating the uncertainty and non-uniqueness of gas migration channels in sediments.
文摘European Community policy concerning water is placing increasing demands on the acquisition of information about the quality of aquatic environments. The cost of this information has led to a reflection on the rationalization of monitoring networks and, therefore, on the economic value of information produced by these networks. The aim of this article is to contribute to this reflection. To do so, we used the Bayesian framework to define the value of additional information in relation to the following three parameters: initial assumptions (prior probabilities) on the states of nature, costs linked to a poor decision (error costs) and accuracy of additional information. We then analyzed the impact of these parameters on this value, particularly the combined role of prior probabilities and error costs that increased or decreased the value of information depending on the initial uncertainty level. We then illustrated the results using a case study of a stream in the Bas-Rhin department in France.
基金the National Key R&D Program of China(2022YFE0107100)the National Key R&D Programs of China(Grant No.2019YFD0901000)the National Natural Science Foundation of China(Grant No.61903007).
文摘Thunniform swimmers(tuna)have a swinging narrow sequence stalk and a moon-shaped tail fin,which performs poorly at slow speed,higher acceleration and turning maneuverability.In most cases,faster speed and higher maneuverability are mutually rejection for most marine creatures and their robotic opponents.This paper presents a novel hybrid tuna-like swimming robot for aquaculture water quality monitoring,which interleaves faster speed and higher maneuverability.The robotic prototype emphasizes on streamlining and enhanced maneuverability mechanism designs in conjunction with a narrow caudal propeller to the tail.The innovative design endows the robot to easily execute the multi-mode swimming gait,including forward swimming,turning,diving/surfacing.The capabilities of our robot are validated through a series of indoor swimming pool and field breeding ponds.The robotic fish can achieve a maximum speed up to about 1.16 m/s and a minimum turning radius less than 0.46 Body Lengths(BL)and its maximum turning speed can reach 78.6∘/s.Due to its high speed,maneuverability and relatively small size,the robotic fish shed light on intelligent monitoring in complex aquatic environments.