According to drilling core analysis and a lot of.field information,it was proved that the current reservoir range above oil-water contact detected by observation wells,was no more a complete pure oil bearing zone with...According to drilling core analysis and a lot of.field information,it was proved that the current reservoir range above oil-water contact detected by observation wells,was no more a complete pure oil bearing zone with exception of water cone,but a complicated oil-water mixed zone.The oil,satura-tion in the fracture system varied greatly.The large fractures with width of over 100μm were al-most water flushed,the middle fractures between 50-100μm were water encroachment zone and the small fractures less than 50μm were still in a good oil-bearing condition.展开更多
Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numer...Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.展开更多
Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment ...Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment.展开更多
Globally,groundwater has globally emerged as a crucial freshwater source for domestic,irrigation,and industrial needs.The evaluation of groundwater quality in the Toshka region is imperative to ensure its suitability ...Globally,groundwater has globally emerged as a crucial freshwater source for domestic,irrigation,and industrial needs.The evaluation of groundwater quality in the Toshka region is imperative to ensure its suitability for the extensive agricultural and industrial activities underway in this promising,groundwater-dependent development area.This is particularly significant as Egypt increasingly relies on groundwater reserves to address freshwater deficits and to implement mega-development projects in barren lands.In this study,fifty-two samples were collected from the recently drilled wells tapping into the Nubian Sandstone Aquifer(NSA)in the Toshka region.Groundwater quality was assessed through hydrochemical analysis,Piper diagram,and various indicators such as Na%,SAR,RSC,KR,MH and PI.The hydrochemical analysis revealed improved groundwater quality characteristics,attributed to continuous recharge from Lake Nasser.The Piper diagram categorised most of the water samples as"secondary salinity"water type.Almost all wells proved suitable for irrigation with only two wells unsuitable based on MH values and six wells based on KR values.Considering Total Hardness(TH)values,all samples were classified as"Soft",indicating their suitability for domestic and industrial purposes.Water Quality Index(WQI)results concluded that all samples met WHO and FAO guidelines for drinking and irrigation,respectively.Spatial distribution maps,constructed using GIS,facilitate the interpretation of the results.Regular monitoring of quality parameters is essential to detect any deviation from permissible limits.展开更多
The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas ...The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas storage and production,this study collected coalbed methane co-produced water in the southeast Qinshui Basin and detected chemical and isotopic compositions,especially 36Cl and 129I concentrations.The calculated tracer ages of 129I(5.2–50.6 Ma)and 36Cl(0.13–0.76 Ma)are significantly younger than the age of coal-bearing formation(Pennsylvanian-Cisuralian),indicating freshwater recharge after coal deposition.The model that utilises 129I/I and 36Cl/Cl ratios to constrain the timing of recharge and the proportion of recharge water reveals that over 60%of pre-anthropogenic meteoric water entered coal seams since 10 Ma and mixed with residue initial deposition water,corresponding to the basin inversion in Cenozoic.The spatial distribution of major ion concentrations reveals the primary recharge pathway for meteoric water from coal outcrops at the eastern margin to the basin center.This study demonstrates the occurrence of higher gas production rates from wells that accept water recharge in recent times and suggests the possible potential of the non-stagnant zones for high gas production.展开更多
An integrated method that implements multivariate statistical analysis and ML methods to evaluate groundwater quality of the shallow aquifers of the Djerid and Kebili district,Southern Tunisia,was adopted.An evaluatio...An integrated method that implements multivariate statistical analysis and ML methods to evaluate groundwater quality of the shallow aquifers of the Djerid and Kebili district,Southern Tunisia,was adopted.An evaluation of their suitability for irrigation and/or drinking purposes is necessary.A comprehensive hydrochemical assessment of 52 samples with entropy weighted water quality index(EWQI)was also proposed.Eleven water parameters were calculated to ascertain the potential use of those resources in irrigation and drinking.Multivariate analysis showed two main components with Dim1(variance=62.3%)and Dim.2(variance=22%),due to the bicarbonate,dissolution,and evaporation and the intrusion of drainage water.The evaluation of water quality has been carried out using EWQI model.The calculated EWQI for the Djerid and Kebili waters(i.e.,52 samples)varied between 7.5 and 152.62,indicating a range of 145.12.A mean of 79.12 was lower than the median(88.47).From the calculation of EWQI,only 14 samples are not suitable for irrigation because of their poor to extremely poor quality(26.92%).The bivariate plot showed high correlation for EWQI~TH(r=0.93),EWQI~SAR(r=0.87),indicating that water quality depended on those parameters.Diff erent ML algorithms were successfully applied for the water quality classifi cation.Our results indicated high prediction accuracy(SVM>LDA>ANN>kNN)and perfect classifi cation for kNN,LDA and Naive Bayes.For the purposes of developing the prediction models,the dataset was divided into two groups:training(80%)and testing(20%).To evaluate the models’performance,RMSE,MSE,MAE and R^(2) metrics were used.kNN(R^(2)=0.9359,MAE=6.49,MSE=79.00)and LDA(accuracy=97.56%;kappa=96.21%)achieved high accuracy.Moreover,linear regression indicated high correlation for both training(R^(2)=0.9727)and testing data(0.9890).This well confi rmed the validity of LDA algorithm in predicting water quality.Cross validation showed a high accuracy(92.31%),high sensitivity(89.47%)and high specifi city(95%).These fi ndings are fundamentally important for an integrated water resource management in a larger context of sustainable development of the Kebili district.展开更多
The marine hydrological process is still unclear due to scarce observations.Based on stable water isotopes in surface seawater along the 33rd Chinese National Antarctic Science Expedition from November 2016 to April 2...The marine hydrological process is still unclear due to scarce observations.Based on stable water isotopes in surface seawater along the 33rd Chinese National Antarctic Science Expedition from November 2016 to April 2017,this study explored the hydrological processes in the Pacific,Indian and Southern oceans.The results show that the Northwest Pacific(0°–26°N)is a region with strong evaporation(theδ18O-δD slope is 6.58),while the southern Indian Ocean is a region with strong precipitation(theδ18O-δD slope is 9.57).The influence of continental runoff and water mass mixing reduces the correlation betweenδ18O and salinity in the eastern Indian Ocean.The characteristics of the isotopes and hydrological parameters indicate that the Agulhas Front and sub-Tropical Convergence do not merge in the Antarctic–Indian Ocean region.The freezing of sea ice near the Antarctic continent decreases theδ18O andδD by 0.40‰and 7.0‰,respectively,compared with those near 67°S.This study is helpful for understanding marine hydrological processes and promoting the understanding and research of the nature of ocean responses in the context of climate change.展开更多
This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The ...This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.展开更多
A multi-faceted Case Area Targeted Intervention (CATI) approach emphasizing the integration of Water, Sanitation and Hygiene (WASH) interventions and Oral Cholera Vaccine (OCV) campaign was employed to respond to the ...A multi-faceted Case Area Targeted Intervention (CATI) approach emphasizing the integration of Water, Sanitation and Hygiene (WASH) interventions and Oral Cholera Vaccine (OCV) campaign was employed to respond to the outbreak of cholera in Garissa County. Drinking water sources in areas heavily impacted by cholera were systematically mapped and tested for microbiological quality. The quality assessment was carried out in April 2023 during an ongoing cholera outbreak in the county. A total of 109 samples were collected and tested for thermotolerant coliforms and other in situ parameters. The finding revealed that more than 87% of the samples did not meet the World Health Organization (WHO) standard for thermotolerant coliforms;and 30% had turbidity values above the recommended threshold values. None of the 109 samples had any traceable residual chlorine. Following these findings, the county government implemented the targeted interventions which resulted in a positive impact in the fight against cholera. The WHO supported key interventions which included capacity building in water quality monitoring and prepositioning of critical WASH commodities to the cholera affected areas.展开更多
Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified...Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation.展开更多
The properties of salinity in the South China Sea(SCS),a significant marginal sea connecting the Pacific and Indian Oceans,are greatly influenced by the transport of fresh water flux between the two oceans.However,the...The properties of salinity in the South China Sea(SCS),a significant marginal sea connecting the Pacific and Indian Oceans,are greatly influenced by the transport of fresh water flux between the two oceans.However,the long-term changes in the intermediate water in the SCS have not been thoroughly studied due to limited data,particularly in relation to its thermodynamic variations.This study utilized reanalysis data products to identify a 60-year trend of freshening in the intermediate waters of the northern South China Sea(NSCS),accompanied by an expansion of low-salinity water.The study also constructed salinity budget terms,including advection and entrainment processes,and conducted an analysis of the salinity budget to understand the impacts of external and internal dynamic processes on the freshening trend of the intermediate water in the NSCS.The analysis revealed that the freshening in the northwest Pacific Ocean and the intensification of intrusion through the Luzon Strait at intermediate levels are the primary drivers of the salinity changes in the NSCS.Additionally,a weakened trend in the intensity of vertical entrainment also contributes to the freshening in the NSCS.This study offers new insights into the understanding of regional deep sea changes in response to variations in both thermodynamics and oceanic dynamic processes.展开更多
Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline ...Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.展开更多
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov...Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.展开更多
A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resou...A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resource Recovery Facility (WRRF) effluent to waters that supply drinking water treatment plants has been documented by some communities. In the United States (US), among the top 25 most impacted drinking water treatment plants by upstream WRRF, 16% of the influent flow to the drinking water treatment plant under average streamflow and up to 100% under low-flow conditions is WRRF effluent. Currently, the full extent of de facto reuse in the US may be much higher because of population growth. The scenario is no different for Beaufort-Jasper Water and Sewer Authority (BJWSA) in South Carolina, US, with contributions to the Savannah River originating from numerous WRRF and other upstream dischargers. South Carolina coastal utilities such as BJSWA are considering direct and indirect potable reuse options, driven by disposal limitations and challenges. Currently, South Carolina does not have a framework, guidelines, or regulations for reuse, but discussions have started among the regulated community. In addition to understanding the extent of de facto reuse, the state will need to develop standards and best practices to enable future adoption of planned potable reuse solutions to water resources challenges. Such guidance should address human health risk management and technical considerations regarding treatment in addition to other factors, including source control, storage, fail-safe operation, monitoring, non-cost factors, and public acceptance. This study conducted a mapping assessment specific to BJWSA, sampled at four locations on Savannah River, and observed that de facto reuse is approximately 4.6% to 5.9% during low-flow months and is within the range generally observed nationwide. When coupled with evidence that planned potable reuse can improve human health and environmental risks, this practice is a meaningful option in the water supply portfolio for many utilities.展开更多
This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the South...This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption.展开更多
This study aimed to determine variations in water quality index(WQI)and physicochemical properties of surface water and bottom sediments of selected coastal beaches of Niger Delta,Southern Nigeria.The water quality of...This study aimed to determine variations in water quality index(WQI)and physicochemical properties of surface water and bottom sediments of selected coastal beaches of Niger Delta,Southern Nigeria.The water quality of the river is categorized into five classes,which are classes I,II,III,IV and V based on the WQI(derived from the determination of DO,BOD,COD,TSS and ammonia and pH).Water and bottom sediment samples were analysed using standard procedures.During the wet season,physicochemical parameters such as potential hydrogen(pH),electrical conductivity(EC),dissolved oxygen(DO),total dissolved solids(TDS)and salinity showed significant difference(p<0.05)across all the locations.During the dry season,parameters like EC,EA,pH,sodium(Na),sulphate(SO4),chloride(Cl-),potassium(K),effective cation exchange capacity(ECEC)and calcium(Ca)showed significant difference(p<0.05)across all the six sampled beaches while phosphate(PO4)did not show any clear significant difference across all the sampled locations.The general trend in the levels of physicochemical parameters revealed that temperature and pH were within those recommended by World Health Organization(WHO)and United States Environmental Protection Agency(USEPA)for both wet and dry season but EC and TDS were above the WHO and USEPA limit.Twenty one(21)water quality parameters from six sampling locations were studied and by applying WQI,the state of the six beach water was very unsuitable for drinking,swimming and recreational activities as at the time of this study.The water is only suitable for irrigation purpose.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Groundwater is the main source of drinking water for large cities in most African countries. In Moundou, for example, the conventional groundwater supply system is failing. To compensate for this state failure, the po...Groundwater is the main source of drinking water for large cities in most African countries. In Moundou, for example, the conventional groundwater supply system is failing. To compensate for this state failure, the population is building boreholes and wells, most of which tap the surface water table, generally referred to as the “water table”. The aim of this study is to characterize these waters in order to assess their level of contamination and, by extension, the degree of pollution of the water table. Major elements such as: Chloride (Cl<sup>-</sup>), Sulfate (SO<sub>4</sub><sup>2-</sup>), Nitrate (NO<sub>3</sub><sup>-</sup>), Calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) were analysed by Liquid Chromatography and the Bicarbonate ion (HCO<sub>3</sub><sup>-</sup>) was determined by the titrimetric method. The methodology applied is based on a combination of hydrochemical techniques and statistical analysis (PCA and CHA). A sampling campaign was carried out during high-water periods. The results of the physico-chemical analyses show mineralization ranging from 7.29 to 3670 μS/cm, with an average of 487.44 μS/cm. The groundwater studied is generally acidic, with a pH ranging from 3.26 to 6.41. Based on their anions, they are classified into four main hydrochemical facies: chloride and sulphate facies, calcium and magnesium facies, sodium and potassium facies and bicarbonate facies. The various correlations between major ions and statistical analyses have enabled us to identify three hydrogeochemical processes involved in water mineralization. The dominant process is silicate hydrolysis, followed by cation exchange, then anthropogenic input, which influences mineralization by polluting the water.展开更多
The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined u...The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.展开更多
Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production w...Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.展开更多
文摘According to drilling core analysis and a lot of.field information,it was proved that the current reservoir range above oil-water contact detected by observation wells,was no more a complete pure oil bearing zone with exception of water cone,but a complicated oil-water mixed zone.The oil,satura-tion in the fracture system varied greatly.The large fractures with width of over 100μm were al-most water flushed,the middle fractures between 50-100μm were water encroachment zone and the small fractures less than 50μm were still in a good oil-bearing condition.
基金supported by the China Scholarship Council(CSC,Grant No.202108050072)JSPS KAKENHI(Grant No.JP19KK0121)。
文摘Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.
基金supported by the National Natural Science Foundation of China(31972091)。
文摘Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment.
基金supported by the Ministry of Water Resources and Irrigation 2016(MWRI)which permitted access to the pumping wells,hydrogeological cross section near the study area and administered the sampling procedures。
文摘Globally,groundwater has globally emerged as a crucial freshwater source for domestic,irrigation,and industrial needs.The evaluation of groundwater quality in the Toshka region is imperative to ensure its suitability for the extensive agricultural and industrial activities underway in this promising,groundwater-dependent development area.This is particularly significant as Egypt increasingly relies on groundwater reserves to address freshwater deficits and to implement mega-development projects in barren lands.In this study,fifty-two samples were collected from the recently drilled wells tapping into the Nubian Sandstone Aquifer(NSA)in the Toshka region.Groundwater quality was assessed through hydrochemical analysis,Piper diagram,and various indicators such as Na%,SAR,RSC,KR,MH and PI.The hydrochemical analysis revealed improved groundwater quality characteristics,attributed to continuous recharge from Lake Nasser.The Piper diagram categorised most of the water samples as"secondary salinity"water type.Almost all wells proved suitable for irrigation with only two wells unsuitable based on MH values and six wells based on KR values.Considering Total Hardness(TH)values,all samples were classified as"Soft",indicating their suitability for domestic and industrial purposes.Water Quality Index(WQI)results concluded that all samples met WHO and FAO guidelines for drinking and irrigation,respectively.Spatial distribution maps,constructed using GIS,facilitate the interpretation of the results.Regular monitoring of quality parameters is essential to detect any deviation from permissible limits.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150710532 and 42103048).
文摘The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas storage and production,this study collected coalbed methane co-produced water in the southeast Qinshui Basin and detected chemical and isotopic compositions,especially 36Cl and 129I concentrations.The calculated tracer ages of 129I(5.2–50.6 Ma)and 36Cl(0.13–0.76 Ma)are significantly younger than the age of coal-bearing formation(Pennsylvanian-Cisuralian),indicating freshwater recharge after coal deposition.The model that utilises 129I/I and 36Cl/Cl ratios to constrain the timing of recharge and the proportion of recharge water reveals that over 60%of pre-anthropogenic meteoric water entered coal seams since 10 Ma and mixed with residue initial deposition water,corresponding to the basin inversion in Cenozoic.The spatial distribution of major ion concentrations reveals the primary recharge pathway for meteoric water from coal outcrops at the eastern margin to the basin center.This study demonstrates the occurrence of higher gas production rates from wells that accept water recharge in recent times and suggests the possible potential of the non-stagnant zones for high gas production.
文摘An integrated method that implements multivariate statistical analysis and ML methods to evaluate groundwater quality of the shallow aquifers of the Djerid and Kebili district,Southern Tunisia,was adopted.An evaluation of their suitability for irrigation and/or drinking purposes is necessary.A comprehensive hydrochemical assessment of 52 samples with entropy weighted water quality index(EWQI)was also proposed.Eleven water parameters were calculated to ascertain the potential use of those resources in irrigation and drinking.Multivariate analysis showed two main components with Dim1(variance=62.3%)and Dim.2(variance=22%),due to the bicarbonate,dissolution,and evaporation and the intrusion of drainage water.The evaluation of water quality has been carried out using EWQI model.The calculated EWQI for the Djerid and Kebili waters(i.e.,52 samples)varied between 7.5 and 152.62,indicating a range of 145.12.A mean of 79.12 was lower than the median(88.47).From the calculation of EWQI,only 14 samples are not suitable for irrigation because of their poor to extremely poor quality(26.92%).The bivariate plot showed high correlation for EWQI~TH(r=0.93),EWQI~SAR(r=0.87),indicating that water quality depended on those parameters.Diff erent ML algorithms were successfully applied for the water quality classifi cation.Our results indicated high prediction accuracy(SVM>LDA>ANN>kNN)and perfect classifi cation for kNN,LDA and Naive Bayes.For the purposes of developing the prediction models,the dataset was divided into two groups:training(80%)and testing(20%).To evaluate the models’performance,RMSE,MSE,MAE and R^(2) metrics were used.kNN(R^(2)=0.9359,MAE=6.49,MSE=79.00)and LDA(accuracy=97.56%;kappa=96.21%)achieved high accuracy.Moreover,linear regression indicated high correlation for both training(R^(2)=0.9727)and testing data(0.9890).This well confi rmed the validity of LDA algorithm in predicting water quality.Cross validation showed a high accuracy(92.31%),high sensitivity(89.47%)and high specifi city(95%).These fi ndings are fundamentally important for an integrated water resource management in a larger context of sustainable development of the Kebili district.
基金The National Natural Science Foundation of China under contract No.42122047the Basic Research Fund of Chinese Academy of Meteorological Sciences under contract Nos 2021Z006,2023Z015 and 2023Z005the Chinese National Antarctic Science Expedition.
文摘The marine hydrological process is still unclear due to scarce observations.Based on stable water isotopes in surface seawater along the 33rd Chinese National Antarctic Science Expedition from November 2016 to April 2017,this study explored the hydrological processes in the Pacific,Indian and Southern oceans.The results show that the Northwest Pacific(0°–26°N)is a region with strong evaporation(theδ18O-δD slope is 6.58),while the southern Indian Ocean is a region with strong precipitation(theδ18O-δD slope is 9.57).The influence of continental runoff and water mass mixing reduces the correlation betweenδ18O and salinity in the eastern Indian Ocean.The characteristics of the isotopes and hydrological parameters indicate that the Agulhas Front and sub-Tropical Convergence do not merge in the Antarctic–Indian Ocean region.The freezing of sea ice near the Antarctic continent decreases theδ18O andδD by 0.40‰and 7.0‰,respectively,compared with those near 67°S.This study is helpful for understanding marine hydrological processes and promoting the understanding and research of the nature of ocean responses in the context of climate change.
基金supported by The Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)the National Natural Science Foundation of China(91437221,91837204).
文摘This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.
文摘A multi-faceted Case Area Targeted Intervention (CATI) approach emphasizing the integration of Water, Sanitation and Hygiene (WASH) interventions and Oral Cholera Vaccine (OCV) campaign was employed to respond to the outbreak of cholera in Garissa County. Drinking water sources in areas heavily impacted by cholera were systematically mapped and tested for microbiological quality. The quality assessment was carried out in April 2023 during an ongoing cholera outbreak in the county. A total of 109 samples were collected and tested for thermotolerant coliforms and other in situ parameters. The finding revealed that more than 87% of the samples did not meet the World Health Organization (WHO) standard for thermotolerant coliforms;and 30% had turbidity values above the recommended threshold values. None of the 109 samples had any traceable residual chlorine. Following these findings, the county government implemented the targeted interventions which resulted in a positive impact in the fight against cholera. The WHO supported key interventions which included capacity building in water quality monitoring and prepositioning of critical WASH commodities to the cholera affected areas.
文摘Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation.
基金National Natural Science Foundation of China(92158204,42076019)Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(31020004)Open Project of the State Key Laboratory of Tropical Oceanography(LTOZZ2001)。
文摘The properties of salinity in the South China Sea(SCS),a significant marginal sea connecting the Pacific and Indian Oceans,are greatly influenced by the transport of fresh water flux between the two oceans.However,the long-term changes in the intermediate water in the SCS have not been thoroughly studied due to limited data,particularly in relation to its thermodynamic variations.This study utilized reanalysis data products to identify a 60-year trend of freshening in the intermediate waters of the northern South China Sea(NSCS),accompanied by an expansion of low-salinity water.The study also constructed salinity budget terms,including advection and entrainment processes,and conducted an analysis of the salinity budget to understand the impacts of external and internal dynamic processes on the freshening trend of the intermediate water in the NSCS.The analysis revealed that the freshening in the northwest Pacific Ocean and the intensification of intrusion through the Luzon Strait at intermediate levels are the primary drivers of the salinity changes in the NSCS.Additionally,a weakened trend in the intensity of vertical entrainment also contributes to the freshening in the NSCS.This study offers new insights into the understanding of regional deep sea changes in response to variations in both thermodynamics and oceanic dynamic processes.
文摘Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.
基金jointly supported by the National Natural Science Foundation of China(41702280)the projects of the China Geology Survey(DD20221754 and DD20190333)。
文摘Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.
文摘A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resource Recovery Facility (WRRF) effluent to waters that supply drinking water treatment plants has been documented by some communities. In the United States (US), among the top 25 most impacted drinking water treatment plants by upstream WRRF, 16% of the influent flow to the drinking water treatment plant under average streamflow and up to 100% under low-flow conditions is WRRF effluent. Currently, the full extent of de facto reuse in the US may be much higher because of population growth. The scenario is no different for Beaufort-Jasper Water and Sewer Authority (BJWSA) in South Carolina, US, with contributions to the Savannah River originating from numerous WRRF and other upstream dischargers. South Carolina coastal utilities such as BJSWA are considering direct and indirect potable reuse options, driven by disposal limitations and challenges. Currently, South Carolina does not have a framework, guidelines, or regulations for reuse, but discussions have started among the regulated community. In addition to understanding the extent of de facto reuse, the state will need to develop standards and best practices to enable future adoption of planned potable reuse solutions to water resources challenges. Such guidance should address human health risk management and technical considerations regarding treatment in addition to other factors, including source control, storage, fail-safe operation, monitoring, non-cost factors, and public acceptance. This study conducted a mapping assessment specific to BJWSA, sampled at four locations on Savannah River, and observed that de facto reuse is approximately 4.6% to 5.9% during low-flow months and is within the range generally observed nationwide. When coupled with evidence that planned potable reuse can improve human health and environmental risks, this practice is a meaningful option in the water supply portfolio for many utilities.
文摘This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption.
文摘This study aimed to determine variations in water quality index(WQI)and physicochemical properties of surface water and bottom sediments of selected coastal beaches of Niger Delta,Southern Nigeria.The water quality of the river is categorized into five classes,which are classes I,II,III,IV and V based on the WQI(derived from the determination of DO,BOD,COD,TSS and ammonia and pH).Water and bottom sediment samples were analysed using standard procedures.During the wet season,physicochemical parameters such as potential hydrogen(pH),electrical conductivity(EC),dissolved oxygen(DO),total dissolved solids(TDS)and salinity showed significant difference(p<0.05)across all the locations.During the dry season,parameters like EC,EA,pH,sodium(Na),sulphate(SO4),chloride(Cl-),potassium(K),effective cation exchange capacity(ECEC)and calcium(Ca)showed significant difference(p<0.05)across all the six sampled beaches while phosphate(PO4)did not show any clear significant difference across all the sampled locations.The general trend in the levels of physicochemical parameters revealed that temperature and pH were within those recommended by World Health Organization(WHO)and United States Environmental Protection Agency(USEPA)for both wet and dry season but EC and TDS were above the WHO and USEPA limit.Twenty one(21)water quality parameters from six sampling locations were studied and by applying WQI,the state of the six beach water was very unsuitable for drinking,swimming and recreational activities as at the time of this study.The water is only suitable for irrigation purpose.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
文摘Groundwater is the main source of drinking water for large cities in most African countries. In Moundou, for example, the conventional groundwater supply system is failing. To compensate for this state failure, the population is building boreholes and wells, most of which tap the surface water table, generally referred to as the “water table”. The aim of this study is to characterize these waters in order to assess their level of contamination and, by extension, the degree of pollution of the water table. Major elements such as: Chloride (Cl<sup>-</sup>), Sulfate (SO<sub>4</sub><sup>2-</sup>), Nitrate (NO<sub>3</sub><sup>-</sup>), Calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) were analysed by Liquid Chromatography and the Bicarbonate ion (HCO<sub>3</sub><sup>-</sup>) was determined by the titrimetric method. The methodology applied is based on a combination of hydrochemical techniques and statistical analysis (PCA and CHA). A sampling campaign was carried out during high-water periods. The results of the physico-chemical analyses show mineralization ranging from 7.29 to 3670 μS/cm, with an average of 487.44 μS/cm. The groundwater studied is generally acidic, with a pH ranging from 3.26 to 6.41. Based on their anions, they are classified into four main hydrochemical facies: chloride and sulphate facies, calcium and magnesium facies, sodium and potassium facies and bicarbonate facies. The various correlations between major ions and statistical analyses have enabled us to identify three hydrogeochemical processes involved in water mineralization. The dominant process is silicate hydrolysis, followed by cation exchange, then anthropogenic input, which influences mineralization by polluting the water.
文摘The study aimed at assessing the physiochemical characteristics of rainwater in Warri and it environ was investigated. Pb, Zn, Cd, Cu and Cr concentrations in rainwater from roof and non-roof sources were determined using Atomic Absorption Spectrophotometry. Three geospatial locations comprising Jakpa, Udu, and Ubeji were selected based on prevailing anthropogenic activities. The rainwater samples were systematically collected from (aluminum) roof and non-roof sources for the months of April, June, and August and October 2022, treated and analyzed in the laboratory for sixteen physicochemical parameters. Results were statistically analyzed using ANOVA, and T-test for the determination of the level of relationships and variations across geospatial locations. Significant correlations (r = 0.72) exist between Cr in rainwater from roof and non-roof sources. Implying point-source contaminations and may be emanating from the influence of roof materials. Furthermore, high concentrations of Cd and Pb in roof source above WHO standards were mostly in Jakpa and Ubeji. Calculated Health Risk Index (HRI) for children and adult is greater than 1. The results showed that most samples from the locations are considered not safe (HRI > 1) especially for Cd, which means that there are potential health risks consuming rainwater from Jakpa, Udu and Ubeji. Therefore, there is need for prompt sensitization program to dissuade people from directly drinking rainwater from these locations.
文摘Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.