期刊文献+
共找到24,644篇文章
< 1 2 250 >
每页显示 20 50 100
Contract Mechanism of Water Environment Regulation for Small and Medium Sized Enterprises Based on Optimal Control Theory
1
作者 Shuang Zhao Hongbin Gu +2 位作者 Lianfang Xue Dongsheng Wang Bin Huang 《Journal of Water Resource and Protection》 CAS 2024年第7期538-556,共20页
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea... The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed. 展开更多
关键词 Optimal control Theory Small and Medium-Sized Enterprises water Environment Regulation Contract Mechanism
下载PDF
Control system design for a pressure-tube-type supercritical water-cooled nuclear reactor via a higher order sliding mode method
2
作者 M.Hajipour G.R.Ansarifar 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期145-154,共10页
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor... Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering. 展开更多
关键词 Supercritical water nuclear reactor Higher order sliding mode controller Steam temperature Steam pressure Point kinetics model
下载PDF
Impact of Forestry Interventions on Groundwater Recharge and Sediment Control in the Ganga River Basin 被引量:1
3
作者 Ombir Singh Saswat Kumar Kar Nimmala Mohan Reddy 《Open Journal of Forestry》 2023年第1期13-31,共19页
Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provisi... Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provision and regulation of water. Forested areas provide environmental stability and supply a high proportion of the world’s accessible freshwater for domestic, agricultural, industrial and ecological needs. The present work on “Forestry Interventions for Ganga” to rejuvenate the river is one of the steps toward the Ganga River rejuvenation programme in the country. The consequences of forestry interventions for Ganga will be determined on the basis of water quantity and water quality in the Ganga River. The study conservatively estimated the water savings and sedimentation reduction of the riverscape management in the Ganga basin using the Soil Conservation Service Curve Number (SCS-CN) & GEC, 2015 and Trimble, 1999 & CWC, 2019 methodologies, respectively. Forestry plantations and soil and moisture conservation measures devised in the programme to rejuvenate the Ganga River are expected to increase water recharge and decrease sedimentation load by 231.011 MCM&#183;yr<sup>-1</sup> and 1119.6 cubic m&#183;yr<sup>-1</sup> or 395.20 tons&#183;yr<sup>-1</sup>, respectively, in delineated riverscape area of 83,946 km<sup>2</sup> in Ganga basin due to these interventions. The role of trees and forests in improving hydrologic cycles, soil infiltration and ground water recharge in Ganga basin seems to be the reason for this change. Forest plantations and other bioengineering techniques can help to keep rivers perennial, increase precipitation, prevent soil erosion and mitigate floods, drought & climate change. The bioengineering techniques could be a feasible tool to enhance rivers’ self-purification as well as to make river perennial. The results will give momentum to the National Mission of Clean Ganga (NMCG) and its Namami Gange programme including other important rivers in the country and provide inputs in understanding the linkages among forest structure, function, and streamflow. 展开更多
关键词 Bioengineering Measures Ganga River Basin Sediment control water Harvesting
下载PDF
Optimization of Injection Parameters for Profile Control and Flooding in an Oilfield during High Water Cut Period
4
作者 Meinan Wang Hui Cai +2 位作者 Xiaoqi Chen Junting Zhang Yue Xie 《Journal of Geoscience and Environment Protection》 2023年第11期73-81,共9页
In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfiel... In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfield as the target area, the variation law of water cut and recovery factor of different injection parameters was analyzed, and the optimization research of injection parameters of polymer enhanced foam flooding was carried out. The results show that the higher the injection rate, the lower the water content curve, and the higher the oil recovery rate. As the foam defoamed when encountering oil, when the injection time was earlier than 80% of water cut, the later the injection time was, the better the oil displacement effect would be. When the injection time was later than 80% of water cut, the later the injection time was, the worse the oil displacement effect would be. The larger the injection volume, the lower the water content curve and the higher the recovery rate. After the injection volume exceeded 0.2 PV, the amplitude of changes in water content and recovery rate slowed down. The optimal injection parameters of profile control agent for high water content well group in Oilfield A were: injection rate of 15 m<sup>3</sup>/d, injection timing of 80% water content, and injection volume of 0.2 PV. 展开更多
关键词 High water Cut Period Profile control Injection Rate Injection Timing Injection Volume
下载PDF
Comprehensive Control of Ecological Environment in Water Sources
5
作者 Jiarong ZHANG Shuang WANG Tengfei XU 《Meteorological and Environmental Research》 CAS 2023年第3期73-77,共5页
To scientifically and effectively conduct comprehensive control of water sources to achieve water safety,the importance,main steps and plan of comprehensive control of ecological environment in water sources were anal... To scientifically and effectively conduct comprehensive control of water sources to achieve water safety,the importance,main steps and plan of comprehensive control of ecological environment in water sources were analyzed on the basis of analyzing the development and protection process of foreign water sources.The results show that for the comprehensive control of water sources,it is needed to pay attention to the accurate grasp of the current environmental quality of water sources and carefully analyze the problems in the ecological environment of water sources.Besides,it is necessary to ensure the water quality and quantity of sources,focus on the implementation of environmental remediation and ecological restoration,implement regional protection of water sources,and combine engineering and non-engineering measures to take comprehensive control of environmental problems. 展开更多
关键词 Drinking water safety Non-engineering measures Engineering measures Comprehensive control
下载PDF
Forestry Interventions and Groundwater Recharge, Sediment Control and Carbon Sequestration in the Krishna River Basin
6
作者 Humachadakatte Ramachandra swamy Prabuddha Madan Prasad Singh +6 位作者 Prathima Purushotham Baragur Neelappa Divakara Tattekere Nanjappa Manohara Basavarajaiah Shivamma Chandrashekar Namasivayam Ravi Nimmala Mohan Reddy Ombir Singh 《Open Journal of Forestry》 2023年第4期368-395,共28页
It is a known fact that human activities have a significant impact on global rivers, making the task of rehabilitating them to their former natural state or a more semi-natural state quite challenging. The ongoing ini... It is a known fact that human activities have a significant impact on global rivers, making the task of rehabilitating them to their former natural state or a more semi-natural state quite challenging. The ongoing initiative called “Rejuvenation of Krishna River through Forestry Interventions” aims to contribute to the overall river rejuvenation program in the country. In this context, the effects of forestry interventions on the Krishna River will be evaluated based on water quantity, water quality, and the potential for carbon sequestration through plantation efforts. To assess the outcomes of this study, various methodologies such as Soil Conservation Service Curve Number (SCS-CN), Central Ground Water Board (CGWB) and Intergovernmental Panel on Climate Change (IPCC) have been utilized to estimate water savings, reduction in sedimentation, and carbon sequestration potential within the Krishna basin. The projected results indicate that the implementation of forestry plantations and soil and moisture conservation measures in the Krishna River rejuvenation program could lead to significant improvements. Specifically, the interventions are expected to enhance water recharge by 400.49 million cubic meters per year, reduce sedimentation load by 869.22 cubic meters per year, and increase carbon sequestration by 3.91 lakh metric tonnes per year or 14.34 lakh metric tonnes of CO<sub>2</sub> equivalent. By incorporating forestry interventions into the Krishna riverscape, it is anticipated that the quality and quantity of water flowing through the river will be positively impacted. These interventions will enhance water infiltration, mitigate soil erosion, and contribute to an improved vegetation cover, thereby conserving biodiversity. Moreover, they offer additional intangible benefits such as addressing climate change concerns through enhanced carbon sequestration potential along the entire stretch of riverine areas. 展开更多
关键词 Forestry Interventions Krishna River Basin Sediment control water Recharge Carbon Sequestration
下载PDF
Analysis and experimental study on resistance-increasing behavior of composite high efficiency autonomous inflow control device
7
作者 Liang-Liang Dong Yu-Lin Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1290-1304,共15页
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th... Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production. 展开更多
关键词 water control Flow separation Flow resistance-increasing AICD device Simulation and experiment
下载PDF
Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China
8
作者 LU Haitian ZHAO Ruifeng +3 位作者 ZHAO Liu LIU Jiaxin LYU Binyang YANG Xinyue 《Journal of Arid Land》 SCIE CSCD 2024年第6期798-815,共18页
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp... Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity. 展开更多
关键词 surface water area terrestrial water storage Open-surface water Detection Method with Enhanced Impurity control method Google Earth Engine climate change human activities inland arid and semi-arid areas
下载PDF
Enhancing the Efficiency of Multi-Electrolyzer Clusters with Lye Mixer:Topology Design and Control Strategy
9
作者 Mingxuan Chen Jun Jia +7 位作者 Baoping Zhang Leiyan Han Mengbo Ji Zhangtao Yu Dongfang Li Wenyong Wang Hongjing Jia Huachi Xu 《Energy Engineering》 EI 2024年第10期3055-3074,共20页
The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independe... The rise in hydrogen production powered by renewable energy is driving the field toward the adoption of systems comprising multiple alkaline water electrolyzers.These setups present various operational modes:independent operation and multi-electrolyzer parallelization,each with distinct advantages and challenges.This study introduces an innovative configuration that incorporates a mutual lye mixer among electrolyzers,establishing a weakly coupled system that combines the advantages of two modes.This approach enables efficient heat utilization for faster hot-startup and maintains heat conservation post-lye interconnection,while preserving the option for independent operation after decoupling.A specialized thermal exchange model is developed for this topology,according to the dynamics of the lye mixer.The study further details startup procedures and proposes optimized control strategies tailored to this structural design.Waste heat from the caustic fully heats up the multiple electrolyzers connected to the lye mixing system,enabling a rapid hot start to enhance the system’s ability to track renewable energy.A control strategy is established to reduce heat loss and increase startup speed,and the optimal valve openings of the diverter valve and the manifold valve are determined.Simulation results indicate a considerable enhancement in operational efficiency,marked by an 18.28%improvement in startup speed and a 6.11%reduction in startup energy consumption inmulti-electrolyzer cluster systems,particularlywhen the systems are synchronized with photovoltaic energy sources.The findings represent a significant stride toward efficient and sustainable hydrogen production,offering a promising path for large-scale integration of renewable energy. 展开更多
关键词 Alkaline water electrolyzer hydrogen production control strategy system modeling
下载PDF
Experimental investigation on using CO_(2)/H_(2)O emulsion with high water cut in enhanced oil recovery
10
作者 Xi-Dao Wu Peng Xiao +2 位作者 Bei Liu Guang-Jin Chen Jian-Hua Pang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期974-986,共13页
CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fractio... CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut. 展开更多
关键词 CO_(2)/H_(2)O emulsion High water cut CO_(2) mobility control Enhanced oil recovery
下载PDF
Variations in evaporation from water surfaces along the margins of the Badain Jaran Desert over nearly 60 years and influencing factors
11
作者 Li-juan Wang Zhe Wang +3 位作者 Gao-lei Jiang Zhen-long Nie Jian-mei Shen Sheng-hua Song 《Journal of Groundwater Science and Engineering》 2024年第3期253-263,共11页
Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evapor... Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins. 展开更多
关键词 Evaporation from water surface Evaporation paradox Dominant controlling factor Variation trend
下载PDF
Identification of the Diffusion Coefficients of Pollutants ( N O 3 - and Mn2+) through the Walls of Concrete Tank and Vulnerability of the Stored Water Quality
12
作者 Narcisse Malanda Bienvenu Ebata Ndion +2 位作者 Christian Tathy Thibault Mongo Paul Louzolokimbembe 《Engineering(科研)》 2024年第9期246-274,共29页
The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water th... The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method. 展开更多
关键词 Buried Tank water CONCRETE Modelling Optimal control Diffusion Coefficient
下载PDF
Study on Safeguard System of Eco-tourism Compensation of Hukou Section during Ecological Water-control Project of Poyang Lake 被引量:1
13
作者 龚双双 沈中印 +1 位作者 孙冬英 杨云仙 《Journal of Landscape Research》 2010年第12期58-62,72,共6页
Through analysis on the background to develop eco-tourism and necessity for ecological compensation,based on specific condition of Hukou County,in line with the situation to develop eco-tourism during ecological water... Through analysis on the background to develop eco-tourism and necessity for ecological compensation,based on specific condition of Hukou County,in line with the situation to develop eco-tourism during ecological water control project of Poyang Lake,residents' interest protection system and ecological benefit safeguard system for eco-tourism compensation were put forward. 展开更多
关键词 Poyang Lake ECOLOGICAL water control project ECO-TOURISM COMPENSATION Hukou SECTION
下载PDF
STUDY ON OPTIMAL CONTROL OF MUNICIPAL WATER DISTRIBUTION NETWORK 被引量:1
14
作者 张宏伟 杨芳 庄健 《Transactions of Tianjin University》 EI CAS 2001年第3期167-171,共5页
A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using... A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using the time series trigonometric function analysis method;the service discharge based macroscopic model of network performance is established using the network structuring method;a relatively satisfactory mathematical model for the optimal control of water distribution network is put forward in view of security and economy,and solved by the constrained mixed discrete variable complex arithmetic.The model is applied in many examples and the results are satisfactory. 展开更多
关键词 water distribution network water demand forecast macroscopic model optimal control
下载PDF
Cause of over Water Quality Standard and Control Measures of State-controlled Sections in Northern Water-deficient Area of Jiangsu 被引量:5
15
作者 胡永定 韩宝平 +1 位作者 钱新 袁兴程 《Meteorological and Environmental Research》 CAS 2010年第2期91-94,99,共5页
Taking state-controlled section of Xuzhou Peiyan river as an example,the current water quality was monitored,and the cause of over water quality standard was analyzed.The results showed that the pollutants of Peiyan r... Taking state-controlled section of Xuzhou Peiyan river as an example,the current water quality was monitored,and the cause of over water quality standard was analyzed.The results showed that the pollutants of Peiyan river were mainly from the urban river segment,and the immediate cause of over standard was tributary pollutants in urban river segment with the runoff into rivers.So we should strengthen the maintenance of drainage control and gate-han,accelerate the construction of urban wastewater treatment facilities and supporting pipe network,promote rural decentralized sewage treatment,prevent and control livestock and poultry pollution,pesticides and fertilizers pollution,and intercept non-point source pollution by using eco-technology. 展开更多
关键词 State-controlled sections Cause analysis control measures water-deficient area China
下载PDF
Effect of Water Control before Transplanting and Rooting Powder Treatment on Tobacco Seedling Quality and Physiological Properties at Green Stage
16
作者 陈平平 宋怀远 +4 位作者 周亚哲 杨梦慧 裴晓东 易镇邪 屠乃美 《Agricultural Science & Technology》 CAS 2016年第10期2283-2286,2368,共5页
Cultivating strong seedlings is an important guarantee for the production of high-quality flue-cured tobacco, while there are many disadvantages in tobacco floating system that is commonly adopted in China. To improve... Cultivating strong seedlings is an important guarantee for the production of high-quality flue-cured tobacco, while there are many disadvantages in tobacco floating system that is commonly adopted in China. To improve the tobacco floating system, with Xiangyan No.3 as experimental material, the effects of water control before transplanting and rooting powder treatment on tobacco seedling quality and physiological properties at green stage were investigated. The results showed that: (1) water control showed small influence on tobacco seedling quality, while rooting powder treatment and water control + rooting powder treatment showed great influence on tobacco seedling quality, mainly represented by reduced plant height, thickened stem and increased dry matter accumulative amount; (2) water control before transplanting and rooting powder treatment all improved leaf chlorophyll content and root vigor of tobacco seedlings, and the effect of water control + rooting powder treatment was best, followed by rooting powder treatment and water control; (3) all treatments increased the nitrate reductase and invertase activity, and reduced the MDA content of tobacco seedlings, and the effect of water control + rooting powder treatment was best, followed by rooting powder treatment and water control. Mean- while, the treatment effect 10 d before the transplanting was better than that 5 d before the transplanting. In overall, the improvement effects of water control 10 d before transplanting + rooting powder treatment on tobacco seedling quality and physiological properties at green stage were the best. 展开更多
关键词 Flue-cured tobacco Tobacco seedling Green stage water control Rooting powder Physiological properties
下载PDF
Practice and discussion of the quality control of purified water in medical institution preparation 被引量:2
17
作者 翁静艳 张建中 +2 位作者 吕迁洲 姚帮新 赵柳娅 《上海医药》 CAS 2017年第9期69-72,共4页
下载PDF
Orthogonal analysis of water model study on the optimization of flow control devices in a six-strand tundish 被引量:18
18
作者 Zhengyan Wei Yanping Bao +2 位作者 Jianhua Liu Wenxu Gong Baoming Wang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期118-124,共7页
Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a ... Improper flow control devices in a multi-strand tundish can cause some problems, for example, liquid steel cannot reach every nozzle at the same time and the liquid steel in nozzles far away from the entry zone has a lower temperature. The water model experiment of a six-strand tundish of Tianjin Iron & Steel Co. Ltd. was performed, a new "U" type baffle was obtained, and its parameters were defined by perpendicular analysis. The "U" baffle can not only improve those imperfections, but also prolong the residence time of nonmetallic inclusions, which is good for their flotation and separation. 展开更多
关键词 six-strand tundish water model flow control devices OPTIMIZATION
下载PDF
Invasion and control of water hyacinth (Eichhornia crassipes)in China 被引量:18
19
作者 CHU Jian-jun DING Yi ZHUANG Qi-jia 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第8期623-626,共4页
By the time of primary 21st century, water hyacinth had become a serious environmental problem in China. Water hyacinth contributes to the major part of ecological hazards from the invasion of foreign plant species, w... By the time of primary 21st century, water hyacinth had become a serious environmental problem in China. Water hyacinth contributes to the major part of ecological hazards from the invasion of foreign plant species, which is estimated about USD 7 billion a year in values. In the past 10 years, herbicides glyphosate, 2,4-D and paraquat have been used in controlling water hyacinth in China. Al- though the herbicides provided effective control on the weed in some areas, they could not provide the sustainable inhibition on the weed population, while would lead to pollution on water at various levels. At present, the herbicide application on water hyacinth is forbidden in many areas of China such as Shanghai. In this situation, the asexual reproduction inhibitor, KWH02, was invented for controlling water hyacinth and it provided about 70% of growth inhibition without any risk of dead plant pollution. It has been about 10 years for bio-control of water hyacinth in China. Works focused on mainly the efficacy and safety of the utilization of foreign insects. Researches on microorganism herbicides to control water hyacinth were started and obtained primary achievements in recent years. Although there are different opinions on how to face the water hyacinth problem in China, it is accepted widely that the control methods should be high efficient and safe with low cost. Some practical measures for integrated management of water hyacinth are suggested. 展开更多
关键词 INVASION control water hyacinth China
下载PDF
Influential factors and control of water inrush in a coal seam as the main aquifer 被引量:6
20
作者 Gao Rui Yan Hao +2 位作者 Ju Feng Mei Xianchen Wang Xiulin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第2期187-193,共7页
In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme... In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining. 展开更多
关键词 COAL SEAM MAIN AQUIFER water inrush Influential FACTORS control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部