Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the...Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved.展开更多
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte...A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.展开更多
For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a...For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.展开更多
Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa...Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.展开更多
Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelect...Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelectrocatalysts have been developed and optimized to achieve efficient solar hydrogen production.Among various optimization strategies,the regulation of spin polarization can tailor the intrinsic optoelectronic properties for retarding charge recombination and enhancing surface reactions,thus improving the solar-to-hydrogen(STH)efficiency.This review presents recent advances in the regulation of spin polarization to enhance spin polarized-dependent solar hydrogen evolution activity.Specifically,spin polarization manipulation strategies of several typical photocatalysts/photoelectrocatalysts(e.g.,metallic oxides,metallic sulfides,non-metallic semiconductors,ferroelectric materials,and chiral molecules)are described.In the end,the critical challenges and perspectives of spin polarization regulation towards future solar energy conversion are briefly provided.展开更多
Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current...Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.展开更多
Water diversion can alleviate water shortages caused by the uneven distribution of water resources.China’s Southto-North Water Diversion Project(SNWD)is the largest water diversion project worldwide.Based on the pref...Water diversion can alleviate water shortages caused by the uneven distribution of water resources.China’s Southto-North Water Diversion Project(SNWD)is the largest water diversion project worldwide.Based on the prefecturelevel data of China’s Huang-Huai-Hai Plain from 2000 to 2020,this study employs an empirical strategy of Differencesin-Differences(DID)to analyze the impact of SNWD on agricultural production.The results show that SNWD has significantly increased agricultural production,measured by the agricultural value added.The estimated results of the benchmark model remain robust when the contemporaneous policy is addressed,an alternative outcome is used,subsamples are estimated,and alternative estimation techniques are employed.This study argues that the potential impact mechanism may be that SNWD significantly increases the acreage for cash crops but reduces that for grain crops.Heterogeneity analysis shows that in prefectures with high temperature or land potential,SNWD’s impact on agricultural value added is relatively low.In contrast,in areas with prolonged sunshine or high slopes,SNWD’s impact on agricultural value added is relatively large.Given the low added value of grain crops,the government should consider strengthening food security by subsidizing water supply to sustain grain production.展开更多
Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can impr...Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can improve the energy conversion efficiency.Since iron corrodes easily and even self-corrodes to form magnetic iron oxide species and generate corrosion currents,a novel strategy to integrate the hydrogen evolution reaction(HER)with waste Fe upgrading reaction(FUR)is proposed and demonstrated for energy-efficient hydrogen production in neutral media.The heterostructured MoSe_(2)/MoO_(2) grown on carbon cloth(MSM/CC)shows superior HER performance to that of commercial Pt/C at high current densities.By replacing conventional OER with FUR,the potential required to afford the anodic current density of 10 m A cm^(-2)decreases by 95%.The HER/FUR overall reaction shows an ultralow voltage of 0.68 V for 10 m A cm^(-2)with a power equivalent of 2.69 k Wh per m^(3)H_(2).Additionally,the Fe species formed at the anode extract the Rhodamine B(Rh B)pollutant by flocculation and also produce nanosized magnetic powder and beneficiated Rh B for value-adding applications.This work demonstrates both energy-saving hydrogen production and pollutant recycling without carbon emission by a single system and reveals a new direction to integrate hydrogen production with environmental recovery to achieve carbon neutrality.展开更多
The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, prod...The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, production had only reached 1040 MW, leading Cameroon to devise a new national energy sector development strategy targeting 5000 MW by 2035. This paper provides an overview of the current state of energy production and projects future output by 2035. Scientific articles and investigative reports on energy production in Cameroon have enabled an assessment of the current electrical energy production. The 2035 production estimate is based on the Energy Sector Development Projects (PDSEN) report in Cameroon. The current production is estimated at around 1600 MW. Considering the ongoing construction of power plants, future projects, and financing delays, achieving the 5000 MW goal by 2035 appears challenging. Nonetheless, diversifying energy production sources could bring Cameroon closer to this target.展开更多
Sand production is a critical issue during the development of offshore oil and gas fields.Certain gas fields(e.g.the AB gas field)have high porosity and high permeability,and with water at the bottom of the reservoir,...Sand production is a critical issue during the development of offshore oil and gas fields.Certain gas fields(e.g.the AB gas field)have high porosity and high permeability,and with water at the bottom of the reservoir,the risk of sand production greatly increases at high differential pressures.Based on reservoir properties,geological conditions,production requirements,and well logging data,in this study an ultrasonic time difference method,a B index method,and a S index method are used together with a model of rock mass failure(accounting for water influx and pressure depletion)to qualitatively predict sand production.The results show that considered sample gas field has an overall high risk of sand production.The critical differential pressure(CDP)without water influx is in the range of 1.40 to 2.35 MPa,the CDP after water influx is from 0.60 to 1.41MPa.The CDP under pressure depletion is in the range of 1.20 to 1.92 MPa.The differential pressure charts of sand production are plotted,and the safe differential pressure windows with or without water influx are obtained.The model calculation results and the experimental results are consistent with the field production data,which indicates that the implemented prediction method could be taken as a reference for sand production prediction in similar deep water gas fields.展开更多
Kuwaiti oil production faces a growing challenge in the increasing quantities of produced water generated in the production of oil. The high water cut of the produced fluid from the wells and the high salinity of the ...Kuwaiti oil production faces a growing challenge in the increasing quantities of produced water generated in the production of oil. The high water cut of the produced fluid from the wells and the high salinity of the produced water lead to significant degradation of subsurface equipment, specifically the production tubing. Debris generated through the degradation of the inner part of the tubing becomes a constituent of the scaling that deposits in the tubing and blocks the flow of the production fluid, inducing higher maintenance costs. This paper looks at the characteristics of the scaling in regard to the produced water and outlines the economic impact of the produced water induced degradation of the tubing structure.展开更多
On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent grow...On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent growth stages have consistency as well as differences, providing references for optimization of irrigation water. Meanwhile, the research analyzed the deficiency of optimization on irrigation water for crops just by Jensen model.展开更多
Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three...Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.展开更多
The research explored variation coefficient of grains and analyzed the fluctuations of grains in Hubei in the 1990s in order to investigate quantitative cor- relation between grain production and water-related disaste...The research explored variation coefficient of grains and analyzed the fluctuations of grains in Hubei in the 1990s in order to investigate quantitative cor- relation between grain production and water-related disaster. The conclusion is that the effective irrigated area and growing structure are major factors influencing grain production capacity, whose grey relational degrees were 0.91 and 0.85 with grain production, respectively. These indicated that water-related disasters have significant effects on grain yield in Hubei Province.展开更多
Exploiting efficient urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)catalysts are significant for energy-saving H2 production through urea-assisted water electrolysis,but it is still challenging.Herei...Exploiting efficient urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)catalysts are significant for energy-saving H2 production through urea-assisted water electrolysis,but it is still challenging.Herein,carbon-encapsulated CoNi coupled with CoNiMoO(CoNi@CN-CoNiMoO)is prepared by solvothermal method and calcination to enhance the activity/stability of urea-assisted water electrolysis at large current density.It exhibits good activity for UOR(E10/1,000=1.29/1.40 V)and HER(E-10/-1000=-45/-245 mV)in 1.0 M KOH+0.5 M urea solution.For the UOR||HER system,CoNi@CN-CoNiMoO only needs 1.58 V at 500 mA cm-2 and shows good stability.Density functional theory calculation suggests that the strong electronic interaction at the interface between NiCo alloy and N-doping-carbon layers can optimize the adsorption/desorption energy of UOR/HER intermediates and accelerate the water dissociation,which can expedite urea decomposition and Volmer step,thus increasing the UOR and HER activity,respectively.This work provides a new solution to design UOR/HER catalysts for H2 production through urea-assisted water electrolysis.展开更多
This study was carried out to unravel the mechanism of reductions in production performances in high stocking density geese flocks during summer months in "geese-fish" production system. Experiment 1 observed the wa...This study was carried out to unravel the mechanism of reductions in production performances in high stocking density geese flocks during summer months in "geese-fish" production system. Experiment 1 observed the water bacterial growth, lipopolysaccharde concentrations in water and geese blood, and geese reproductive performances from summer to winter, in two flocks with varying on water stocking densities. Results showed that counts of total bacteria, Escherichia coli and Salmonella in water, as well as water and geese plasma LPS concentrations, exhibited a tendency decreasing from the highest levels in summer, to intermediate levels in autumn, and to the lowest values in winter. Such seasonal decreases in bacteria and LPS concentrations were associated with similar seasonal decreases in embryo mortality during incubation. In addition, embryos dead or showing development retardation by day 25 of incubation contained copious LPS in allantoic fluid, in contrast to the negligible amount in normal developing embryos. Raising on water stocking density elevated bacteria counts, LPS concentrations in water and geese plasma, and decreased egg fertility but increased embryo mortality during incubation. In experiment 2, exogenous LPS treatment to the geese depressed egg laying, reduced egg hatchability, caused sickness behavior in the goslings hatched. In experiment 3, exogenous LPS directly administered to day 8 and 18 embryos during incubation dose dependently increased mortality and decreased hatchability, and caused sickness behavior in the goslings hatched. It is concluded that the raising on water geese stocking density stimulates pathogenic bacteria growth in water, which via LPS contamination impaires embryo development in incubation and therefore reduces geese reproductive performance and gosling quality during the hot summer months.展开更多
The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Wat...The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops' production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.展开更多
As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and p...As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and photovoltaic power.Hydrogen production from water electrolysis is a good option to make full use of the surplus renewable energy.Among various technologies for producing hydrogen,water electrolysis using electricity from renewable power sources shows greatpromise.To investigate the prospects of water electrolysis for hydrogen production,this review compares different water electrolysis processes,i.e.,alkaline water electrolysis,proton exchange membrane water electrolysis,solid oxide water electrolysis,and alkaline anion exchange membrane water electrolysis.The ion transfer mechanisms,operating characteristics,energy consumption,and industrial products of different water electrolysis apparatus are introduced in this review.Prospects for new water electrolysis technologies are discussed.展开更多
Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer ...Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.展开更多
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金the financial support from the National Natural Science Foundation of China(52002146).
文摘Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved.
文摘A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.
基金supported by the National Natural Science Foundation of China(51672081)the Program of Tri-three Talents Project of Hebei Province(China,A202110002)+1 种基金the Young Top Talents Fund Program of Higher Education Institutions of Heibei Province(BJ2020009)the Project of Science and Technology Innovation Team,Tangshan(20130203D)。
文摘For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.
基金supported by the National Key R&D Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250).
文摘Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.
基金support from the National Natural Science Foundation of China(No.22105031)National Key Research and Development Program of China(No.2019YFE0121600)+2 种基金Sichuan Science and Technology Program(No.2021YFH0054,2023JDGD0011)Fundamental Research Funds for the Central Universities(ZYGX2020J028)Z.M.W.acknowledges the National Key Research and Development Program of China(No.2019YFB2203400)and the“111 Project”(No.B20030).
文摘Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelectrocatalysts have been developed and optimized to achieve efficient solar hydrogen production.Among various optimization strategies,the regulation of spin polarization can tailor the intrinsic optoelectronic properties for retarding charge recombination and enhancing surface reactions,thus improving the solar-to-hydrogen(STH)efficiency.This review presents recent advances in the regulation of spin polarization to enhance spin polarized-dependent solar hydrogen evolution activity.Specifically,spin polarization manipulation strategies of several typical photocatalysts/photoelectrocatalysts(e.g.,metallic oxides,metallic sulfides,non-metallic semiconductors,ferroelectric materials,and chiral molecules)are described.In the end,the critical challenges and perspectives of spin polarization regulation towards future solar energy conversion are briefly provided.
基金supported by the National Key Research and Development Program of China(Materials and Process Basis of Electrolytic Hydrogen Production from Fluctuating Power Sources such as Photovoltaic/Wind Power,No.2021YFB4000100).
文摘Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.
基金supported by the Ministry of Agriculture and Rural Affairs of China(202207211210319)。
文摘Water diversion can alleviate water shortages caused by the uneven distribution of water resources.China’s Southto-North Water Diversion Project(SNWD)is the largest water diversion project worldwide.Based on the prefecturelevel data of China’s Huang-Huai-Hai Plain from 2000 to 2020,this study employs an empirical strategy of Differencesin-Differences(DID)to analyze the impact of SNWD on agricultural production.The results show that SNWD has significantly increased agricultural production,measured by the agricultural value added.The estimated results of the benchmark model remain robust when the contemporaneous policy is addressed,an alternative outcome is used,subsamples are estimated,and alternative estimation techniques are employed.This study argues that the potential impact mechanism may be that SNWD significantly increases the acreage for cash crops but reduces that for grain crops.Heterogeneity analysis shows that in prefectures with high temperature or land potential,SNWD’s impact on agricultural value added is relatively low.In contrast,in areas with prolonged sunshine or high slopes,SNWD’s impact on agricultural value added is relatively large.Given the low added value of grain crops,the government should consider strengthening food security by subsidizing water supply to sustain grain production.
基金financially supported by the Key Research and Development Program of Hubei Province (2021BAA208)the National Natural Science Foundation of China (52002294,51974208 and U2003130)+3 种基金the Young Top-notch Talent Cultivation Program of Hubei ProvinceKnowledge Innovation Program of Wuhan-Shuguang Project (2022010801020364)the City University of Hong Kong Strategic Research Grant (SRG) (7005505)the City University of Hong Kong Donation Research Grant (DONRMG 9229021)。
文摘Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can improve the energy conversion efficiency.Since iron corrodes easily and even self-corrodes to form magnetic iron oxide species and generate corrosion currents,a novel strategy to integrate the hydrogen evolution reaction(HER)with waste Fe upgrading reaction(FUR)is proposed and demonstrated for energy-efficient hydrogen production in neutral media.The heterostructured MoSe_(2)/MoO_(2) grown on carbon cloth(MSM/CC)shows superior HER performance to that of commercial Pt/C at high current densities.By replacing conventional OER with FUR,the potential required to afford the anodic current density of 10 m A cm^(-2)decreases by 95%.The HER/FUR overall reaction shows an ultralow voltage of 0.68 V for 10 m A cm^(-2)with a power equivalent of 2.69 k Wh per m^(3)H_(2).Additionally,the Fe species formed at the anode extract the Rhodamine B(Rh B)pollutant by flocculation and also produce nanosized magnetic powder and beneficiated Rh B for value-adding applications.This work demonstrates both energy-saving hydrogen production and pollutant recycling without carbon emission by a single system and reveals a new direction to integrate hydrogen production with environmental recovery to achieve carbon neutrality.
文摘The low electricity supply rate is a major cause of underdevelopment in Cameroon. To address this issue, Cameroon outlined a strategy in 2003 aiming for a production capacity of 3000 MW by 2020. However, by 2020, production had only reached 1040 MW, leading Cameroon to devise a new national energy sector development strategy targeting 5000 MW by 2035. This paper provides an overview of the current state of energy production and projects future output by 2035. Scientific articles and investigative reports on energy production in Cameroon have enabled an assessment of the current electrical energy production. The 2035 production estimate is based on the Energy Sector Development Projects (PDSEN) report in Cameroon. The current production is estimated at around 1600 MW. Considering the ongoing construction of power plants, future projects, and financing delays, achieving the 5000 MW goal by 2035 appears challenging. Nonetheless, diversifying energy production sources could bring Cameroon closer to this target.
基金This research is financially supported by the National Natural Science Foundation of China(Grant No.52174015)supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT_14R58).
文摘Sand production is a critical issue during the development of offshore oil and gas fields.Certain gas fields(e.g.the AB gas field)have high porosity and high permeability,and with water at the bottom of the reservoir,the risk of sand production greatly increases at high differential pressures.Based on reservoir properties,geological conditions,production requirements,and well logging data,in this study an ultrasonic time difference method,a B index method,and a S index method are used together with a model of rock mass failure(accounting for water influx and pressure depletion)to qualitatively predict sand production.The results show that considered sample gas field has an overall high risk of sand production.The critical differential pressure(CDP)without water influx is in the range of 1.40 to 2.35 MPa,the CDP after water influx is from 0.60 to 1.41MPa.The CDP under pressure depletion is in the range of 1.20 to 1.92 MPa.The differential pressure charts of sand production are plotted,and the safe differential pressure windows with or without water influx are obtained.The model calculation results and the experimental results are consistent with the field production data,which indicates that the implemented prediction method could be taken as a reference for sand production prediction in similar deep water gas fields.
文摘Kuwaiti oil production faces a growing challenge in the increasing quantities of produced water generated in the production of oil. The high water cut of the produced fluid from the wells and the high salinity of the produced water lead to significant degradation of subsurface equipment, specifically the production tubing. Debris generated through the degradation of the inner part of the tubing becomes a constituent of the scaling that deposits in the tubing and blocks the flow of the production fluid, inducing higher maintenance costs. This paper looks at the characteristics of the scaling in regard to the produced water and outlines the economic impact of the produced water induced degradation of the tubing structure.
文摘On basis of test information, the research performed analysis on water production function models of two crops, which indicated that water model of crops in whole growth stage and water model of crops indifferent growth stages have consistency as well as differences, providing references for optimization of irrigation water. Meanwhile, the research analyzed the deficiency of optimization on irrigation water for crops just by Jensen model.
基金Supported by Operation and Improvement Program of Climate Monitoring,Warning and Assessment Services in Three Gorges Reservoir AreaNational Key Technology R&D Program (2007BAC29B06)+1 种基金Major State Basic Research Development 973 Program (2006CB400503)National Natural Science Foundation of China (40705031)
文摘Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.
基金Supported by Water Conservancy Science and Technology Project~~
文摘The research explored variation coefficient of grains and analyzed the fluctuations of grains in Hubei in the 1990s in order to investigate quantitative cor- relation between grain production and water-related disaster. The conclusion is that the effective irrigated area and growing structure are major factors influencing grain production capacity, whose grey relational degrees were 0.91 and 0.85 with grain production, respectively. These indicated that water-related disasters have significant effects on grain yield in Hubei Province.
基金the National Natural Science Foundation of China(22162004)the Excellent Scholars and Innovation Team of Guangxi Universities,the Innovation Project of Guangxi Graduate Education(YCBZ2022038)the High-performance Computing Platform of Guangxi University。
文摘Exploiting efficient urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)catalysts are significant for energy-saving H2 production through urea-assisted water electrolysis,but it is still challenging.Herein,carbon-encapsulated CoNi coupled with CoNiMoO(CoNi@CN-CoNiMoO)is prepared by solvothermal method and calcination to enhance the activity/stability of urea-assisted water electrolysis at large current density.It exhibits good activity for UOR(E10/1,000=1.29/1.40 V)and HER(E-10/-1000=-45/-245 mV)in 1.0 M KOH+0.5 M urea solution.For the UOR||HER system,CoNi@CN-CoNiMoO only needs 1.58 V at 500 mA cm-2 and shows good stability.Density functional theory calculation suggests that the strong electronic interaction at the interface between NiCo alloy and N-doping-carbon layers can optimize the adsorption/desorption energy of UOR/HER intermediates and accelerate the water dissociation,which can expedite urea decomposition and Volmer step,thus increasing the UOR and HER activity,respectively.This work provides a new solution to design UOR/HER catalysts for H2 production through urea-assisted water electrolysis.
基金supported by the National Natural Science Foundation of China (30871795)the Earmarked Fund for Modern Agro-Industry Technology Research System, China (nycytx-45-13)
文摘This study was carried out to unravel the mechanism of reductions in production performances in high stocking density geese flocks during summer months in "geese-fish" production system. Experiment 1 observed the water bacterial growth, lipopolysaccharde concentrations in water and geese blood, and geese reproductive performances from summer to winter, in two flocks with varying on water stocking densities. Results showed that counts of total bacteria, Escherichia coli and Salmonella in water, as well as water and geese plasma LPS concentrations, exhibited a tendency decreasing from the highest levels in summer, to intermediate levels in autumn, and to the lowest values in winter. Such seasonal decreases in bacteria and LPS concentrations were associated with similar seasonal decreases in embryo mortality during incubation. In addition, embryos dead or showing development retardation by day 25 of incubation contained copious LPS in allantoic fluid, in contrast to the negligible amount in normal developing embryos. Raising on water stocking density elevated bacteria counts, LPS concentrations in water and geese plasma, and decreased egg fertility but increased embryo mortality during incubation. In experiment 2, exogenous LPS treatment to the geese depressed egg laying, reduced egg hatchability, caused sickness behavior in the goslings hatched. In experiment 3, exogenous LPS directly administered to day 8 and 18 embryos during incubation dose dependently increased mortality and decreased hatchability, and caused sickness behavior in the goslings hatched. It is concluded that the raising on water geese stocking density stimulates pathogenic bacteria growth in water, which via LPS contamination impaires embryo development in incubation and therefore reduces geese reproductive performance and gosling quality during the hot summer months.
基金the financial support of Ministry of Science and Technology of China (2012CB955700,2010CB428406)the National Natural Sciences Foundation of China (70925001, 71161140351)+2 种基金the International Development Research Center (107093-001)the Australian Center for International Agriculture (ADP/2010/070)World Bank, and the CAS Strategic Priority Research Program(XDA01020304)
文摘The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops' production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.
基金supported by the Joint Fund of National Natural Science Foundation of China (U1664259)the National Natural Science Foundation of China (91434106)+1 种基金 the State Grid Fund (SGTYHT/15-JS-193)the Beijing municipal science and technology commission project (Z171100002017024)~~
文摘As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and photovoltaic power.Hydrogen production from water electrolysis is a good option to make full use of the surplus renewable energy.Among various technologies for producing hydrogen,water electrolysis using electricity from renewable power sources shows greatpromise.To investigate the prospects of water electrolysis for hydrogen production,this review compares different water electrolysis processes,i.e.,alkaline water electrolysis,proton exchange membrane water electrolysis,solid oxide water electrolysis,and alkaline anion exchange membrane water electrolysis.The ion transfer mechanisms,operating characteristics,energy consumption,and industrial products of different water electrolysis apparatus are introduced in this review.Prospects for new water electrolysis technologies are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52304044,52222402,52234003,52174036)Sichuan Science and Technology Program(Nos.2022JDJQ0009,2023NSFSC0934)+2 种基金Key Technology R&D Program of Shaanxi Province(2023-YBGY-30)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX030202)the China Postdoctoral Science Foundation(Grant No.2022M722638)。
文摘Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.