The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significa...The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.展开更多
文章提出了一种利用高温热泵回收冷却水余热制备中、高温热水的方案。通过建立简化的热力学模型,分析冷、热源温度对热泵单位制热量、单位压缩功及COP(Coefficient of Performance,能效比)值的影响。并从经济节能和环境保护两个方面进...文章提出了一种利用高温热泵回收冷却水余热制备中、高温热水的方案。通过建立简化的热力学模型,分析冷、热源温度对热泵单位制热量、单位压缩功及COP(Coefficient of Performance,能效比)值的影响。并从经济节能和环境保护两个方面进行了效益分析,结果表明:与传统的蒸汽加热制备热水相比,高温热泵回收冷却水余热制备中、高温热水的方案具有经济效益和环境效益,更符合节能减排要求。展开更多
基金supported by National Natural Science Foundation(No.41272301 and No.42007171)Nature Fund of Hebei(No.D2021504034)Chinese Academy of Geological Sciences(No.YYWF201628).
文摘The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.
文摘文章提出了一种利用高温热泵回收冷却水余热制备中、高温热水的方案。通过建立简化的热力学模型,分析冷、热源温度对热泵单位制热量、单位压缩功及COP(Coefficient of Performance,能效比)值的影响。并从经济节能和环境保护两个方面进行了效益分析,结果表明:与传统的蒸汽加热制备热水相比,高温热泵回收冷却水余热制备中、高温热水的方案具有经济效益和环境效益,更符合节能减排要求。