The risk of water utilities would include the water quality failure and the water quantity failure, from the source to the tap, including the catchment, treatment, distribution and the customer plumbing system. In thi...The risk of water utilities would include the water quality failure and the water quantity failure, from the source to the tap, including the catchment, treatment, distribution and the customer plumbing system. In this paper, we proposed a practical evaluation method based on the analytic hierarchy process (AHP). The hierarchical structure of the water utilities was established in terms of the fault event analysis from the past failure accidents. The severity of criteria was preset by the experts and the probability of criteria was determined by a modified CUWA-TSM sheet with the consideration of the actual situations of the supply system. The evaluation model was successfully performed by a case study. Although, the method in this paper may not be as good as the framework of WSPs, it has a great advantage compared to WSPs and TSM. The risk management can be applied through specific software packages with a user-friendly interface, which means it is easier to implement. In addition, it can point out the critical control points (CCPs) for the decisionmakers. So we believe this method will improve and play a more and more active role in the development of the risk management in China water works.展开更多
文摘The risk of water utilities would include the water quality failure and the water quantity failure, from the source to the tap, including the catchment, treatment, distribution and the customer plumbing system. In this paper, we proposed a practical evaluation method based on the analytic hierarchy process (AHP). The hierarchical structure of the water utilities was established in terms of the fault event analysis from the past failure accidents. The severity of criteria was preset by the experts and the probability of criteria was determined by a modified CUWA-TSM sheet with the consideration of the actual situations of the supply system. The evaluation model was successfully performed by a case study. Although, the method in this paper may not be as good as the framework of WSPs, it has a great advantage compared to WSPs and TSM. The risk management can be applied through specific software packages with a user-friendly interface, which means it is easier to implement. In addition, it can point out the critical control points (CCPs) for the decisionmakers. So we believe this method will improve and play a more and more active role in the development of the risk management in China water works.