To predict the thrust of bubbly water ramjet with a converging-diverging nozzle, the physical processes occurring in the diffuser, mixing chamber and nozzle were analyzed. The mathematical models were constructed sepa...To predict the thrust of bubbly water ramjet with a converging-diverging nozzle, the physical processes occurring in the diffuser, mixing chamber and nozzle were analyzed. The mathematical models were constructed separately under the restrictions of certain assumptions. The bubbly nozzle flow was examined using a two-fluid model and accomplished by specifying the water velocity distribution in the nozzle. The numerical analysis of flow field in the nozzle shows that the Mach number at the throat is 1.009, near unity, and supersonic bubble flow appears behind the throat. There is greater thrust produced by bubbly water ramjet, compared with single-phase air ramjets. Subsequently, the influences of vessel velocity, air mass flow rate, inlet area Ai, area ratio (i.e., mixing chamber to inlet area Am/Ai), and initial bubble radius on the thrust were emphatically investigated. Results indicate that the thrust increases with the increase of air mass flow rate, inlet area and the area ratio, and the decrease of initial bubble radius. However, the thrust weakly depends on the vessel velocity. These analytical and numerical results are useful for further investigation of bubbly water ramjet engine.展开更多
Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, an...Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10 L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators' front face decreases, but this increase does not influence the diameter of the supercavity's maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing waterflux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.展开更多
为探索脉冲爆轰水冲压发动机水下工作时导水器内燃气射流发展特性,利用可燃气体的爆轰在水下受限空间内产生脉动气泡,对爆轰管在圆筒形受限空间内的水下爆轰燃气射流进行了数值仿真与实验验证。基于雷诺时均基本方程组与k-ε两方程模型...为探索脉冲爆轰水冲压发动机水下工作时导水器内燃气射流发展特性,利用可燃气体的爆轰在水下受限空间内产生脉动气泡,对爆轰管在圆筒形受限空间内的水下爆轰燃气射流进行了数值仿真与实验验证。基于雷诺时均基本方程组与k-ε两方程模型耦合流体体积气液界面追踪方法的相输运方程建立受限空间中水下单次燃气射流流场流动模型,使用OpenFOAM中的Compressible Inter Foam求解器对受限空间中脉冲爆轰燃气射流进行数值求解。结果表明:受限空间对水下爆轰的前导激波的影响较小,前导激波幅值与自由空间相比变化不大,由爆轰燃气射流所引起的压力扰动大幅升高且持续时间明显增加,受限空间中各处压力显著高于受限空间之外;受限空间中燃气泡的脉动周期延长至60 ms左右,然而受限空间径向尺寸对燃气泡的脉动周期影响较小。可见,受限空间可提高水下爆轰管出口近场压力并延长燃气射流作用时间,研究结果对脉冲爆轰水冲压发动机推力性能提升方法研究具有重要指导作用。展开更多
文摘To predict the thrust of bubbly water ramjet with a converging-diverging nozzle, the physical processes occurring in the diffuser, mixing chamber and nozzle were analyzed. The mathematical models were constructed separately under the restrictions of certain assumptions. The bubbly nozzle flow was examined using a two-fluid model and accomplished by specifying the water velocity distribution in the nozzle. The numerical analysis of flow field in the nozzle shows that the Mach number at the throat is 1.009, near unity, and supersonic bubble flow appears behind the throat. There is greater thrust produced by bubbly water ramjet, compared with single-phase air ramjets. Subsequently, the influences of vessel velocity, air mass flow rate, inlet area Ai, area ratio (i.e., mixing chamber to inlet area Am/Ai), and initial bubble radius on the thrust were emphatically investigated. Results indicate that the thrust increases with the increase of air mass flow rate, inlet area and the area ratio, and the decrease of initial bubble radius. However, the thrust weakly depends on the vessel velocity. These analytical and numerical results are useful for further investigation of bubbly water ramjet engine.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 51579209, 51409215 and 51679202
文摘Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10 L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators' front face decreases, but this increase does not influence the diameter of the supercavity's maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing waterflux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.
文摘为探索脉冲爆轰水冲压发动机水下工作时导水器内燃气射流发展特性,利用可燃气体的爆轰在水下受限空间内产生脉动气泡,对爆轰管在圆筒形受限空间内的水下爆轰燃气射流进行了数值仿真与实验验证。基于雷诺时均基本方程组与k-ε两方程模型耦合流体体积气液界面追踪方法的相输运方程建立受限空间中水下单次燃气射流流场流动模型,使用OpenFOAM中的Compressible Inter Foam求解器对受限空间中脉冲爆轰燃气射流进行数值求解。结果表明:受限空间对水下爆轰的前导激波的影响较小,前导激波幅值与自由空间相比变化不大,由爆轰燃气射流所引起的压力扰动大幅升高且持续时间明显增加,受限空间中各处压力显著高于受限空间之外;受限空间中燃气泡的脉动周期延长至60 ms左右,然而受限空间径向尺寸对燃气泡的脉动周期影响较小。可见,受限空间可提高水下爆轰管出口近场压力并延长燃气射流作用时间,研究结果对脉冲爆轰水冲压发动机推力性能提升方法研究具有重要指导作用。