[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventi...[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventional fertilization was as the control(KC1) in Wanzhou citrus orchard of Three Gorges Reservoir area. CSF reductions by 0%(KC2),10%(KC3),20%(KC4),30%(KC5) and 40%(KC6) were used to analyze the changes of soil bacterial community structure,citrus yield and quality. [Result]The results showed that the observed species,Shannon index,Chao1 index and PDwholetree of KC6 were higher than those of KC1,and were the same as KC2. The abundance of Xanthomonadaceae was the highest in KC5. Compared with KC1,the Xanthomonadaceae in KC3,KC4 and KC6 was significantly decreased,and the levels of Nitrosomonadaceae and Pseudomonasaceae were higher than that of KC1 after the treatment of KC6. Sphingomonas in different reduction treatments was lower than that of KC1,but Burkholderia and Pseudomonas were significantly higher than those of KC1. It was found that the similarity among treatments was small after bacterial community similarity clustering analysis,and citrus yield increased somewhat after CSF fertilization reduction.When CSF fertilization reduced by 30%,citrus yield increased by 4. 50%. When CSF fertilization reduced by 40%,citrus yield decreased by4. 14%. After CSF fertilization,citrus quality did not change significantly in CSF conventional fertilization and reduction of 10% and 40%,while significantly decreased in 20% and 30% of fertilization reduction. [Conclusion] CSF fertilization reduction changed the diversity of soil bacterial community structure and the yield and quality of citrus.展开更多
The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with...The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with equal amount of effective composition. The results showed that the yield of tuber mustard was 50 670-56 496 kg/ha in treatments of nano-carbon water-retaining fertilizer decreasing by 10%-40%,and compared with local tuber mustard fertilizer,the average yield was increased by 94. 8%. The yield increasing rate of tuber mustard was 93. 0%in treatment of nano-carbon water-retaining fertilizer decreasing by 30%. The average fertilizer utilization efficiency of nitrogen and phosphorus was 54% and 39. 7%,respectively,the average increment of fertilizer utilization efficiency was 36% and 37%,respectively compared with local tuber mustard fertilizer. Especially in treatment of reducing nano-carbon water-retaining fertilizer by 30%,the nitrogen and phosphorus fertilizer utilization efficiency was increased by 64% and 56%,respectively. By comprehensive comparison,it was found that nano-carbon waterretaining fertilizer and the treatment of 30% reduction could significantly improve the yield of tuber mustard and fertilizer utilization efficiency,and have popularization and application value in the Three Gorges Reservoir area.展开更多
基金Supported by the National Natural Science Foundation of China(41571303)Science and Technology Development Plan of Tai’an City,Shandong Province(2018HZ0115)
文摘[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventional fertilization was as the control(KC1) in Wanzhou citrus orchard of Three Gorges Reservoir area. CSF reductions by 0%(KC2),10%(KC3),20%(KC4),30%(KC5) and 40%(KC6) were used to analyze the changes of soil bacterial community structure,citrus yield and quality. [Result]The results showed that the observed species,Shannon index,Chao1 index and PDwholetree of KC6 were higher than those of KC1,and were the same as KC2. The abundance of Xanthomonadaceae was the highest in KC5. Compared with KC1,the Xanthomonadaceae in KC3,KC4 and KC6 was significantly decreased,and the levels of Nitrosomonadaceae and Pseudomonasaceae were higher than that of KC1 after the treatment of KC6. Sphingomonas in different reduction treatments was lower than that of KC1,but Burkholderia and Pseudomonas were significantly higher than those of KC1. It was found that the similarity among treatments was small after bacterial community similarity clustering analysis,and citrus yield increased somewhat after CSF fertilization reduction.When CSF fertilization reduced by 30%,citrus yield increased by 4. 50%. When CSF fertilization reduced by 40%,citrus yield decreased by4. 14%. After CSF fertilization,citrus quality did not change significantly in CSF conventional fertilization and reduction of 10% and 40%,while significantly decreased in 20% and 30% of fertilization reduction. [Conclusion] CSF fertilization reduction changed the diversity of soil bacterial community structure and the yield and quality of citrus.
基金Supported by National Natural Science Foundation of China(41571303)Scientific Research Project for Follow-up Work of the Three Gorges(2015HXKY2-4-2)
文摘The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with equal amount of effective composition. The results showed that the yield of tuber mustard was 50 670-56 496 kg/ha in treatments of nano-carbon water-retaining fertilizer decreasing by 10%-40%,and compared with local tuber mustard fertilizer,the average yield was increased by 94. 8%. The yield increasing rate of tuber mustard was 93. 0%in treatment of nano-carbon water-retaining fertilizer decreasing by 30%. The average fertilizer utilization efficiency of nitrogen and phosphorus was 54% and 39. 7%,respectively,the average increment of fertilizer utilization efficiency was 36% and 37%,respectively compared with local tuber mustard fertilizer. Especially in treatment of reducing nano-carbon water-retaining fertilizer by 30%,the nitrogen and phosphorus fertilizer utilization efficiency was increased by 64% and 56%,respectively. By comprehensive comparison,it was found that nano-carbon waterretaining fertilizer and the treatment of 30% reduction could significantly improve the yield of tuber mustard and fertilizer utilization efficiency,and have popularization and application value in the Three Gorges Reservoir area.