The durability of silty clay embankments is partially controlled by the moisture migration, which depends on soil hydraulic properties. This paper presents an experimental study of hydraulic properties of compacted bi...The durability of silty clay embankments is partially controlled by the moisture migration, which depends on soil hydraulic properties. This paper presents an experimental study of hydraulic properties of compacted binary silty clay. Specimens with different mixing ratios and dry densities were prepared. Scanning electron microscopy and mercury intrusion porosimetry were used to characterise the microstructure of silty clay. Thereafter, falling-head permeability tests and water retention tests were conducted to study the permeability and water retention property, respectively. The results demonstrate that clay particles are dispersed and show preferred arrangements after compaction when the clay content is 100%. As the clay content decreases, the arrangement of clay particles is gradually disturbed because of the existence of silt particles, causing the formation of large pores around silt particles. When the dry density increases, the pores around silt particles significantly decrease. Moreover, the permeability of silty clay decreases but the water retention capacity increases with increasing clay content and dry density. This is because the silty clay with larger clay content and dry density has fewer large pores, which greatly restrains the flow of water. Both the permeability and water retention property of silty clay can be predicted from pore size distribution parameters.展开更多
Aiming at the problem of available water conservation in desertification ecological restoration, we prepared the water retention materials with montmorillonite(MMT) modified by Castor Oil Polyoxyethylene Ether(10)...Aiming at the problem of available water conservation in desertification ecological restoration, we prepared the water retention materials with montmorillonite(MMT) modified by Castor Oil Polyoxyethylene Ether(10)(EL-10) emulsifying vegetable waxes. The water retention property was studied in simulated desertification climate, and the materials were analyzed and characterized by UV-Vis, SEM, FTIR and XRD measurements. Moreover, a UV carbon arc lamp was used to test the resistance to aging. The experimental results show that the emulsion has good dispersity. Both the water retention property and the aging resistance performance of the modified clay were excellent. The lamellar structure and chemical composition of MMT had no obvious changes before and after modification. The surfaces of clay particles were coated uniformly with modified MMT, so the loose clay particles were cemented together by vegetable waxes. Meanwhile, the original big hydrophilic pores between the clay particles turned into capillary hydrophobic pores. So the clay particles formed a bonding layer which could inhibit water evaporation. Grass-planting experiment showed that reasonable mass ratio of vegetable waxes and EL-10 was 1:18. The materials not only had great water retention property but also maintained sound air permeability so that the germination rate of grass seed significantly increased from 8% to 52%.展开更多
Thermal conductivity, water retention curve and swelling behavior of two MX80 bentonite samples were studied in the present work. The difference obtained from these two MX80 bentonite samples was then analyzed in term...Thermal conductivity, water retention curve and swelling behavior of two MX80 bentonite samples were studied in the present work. The difference obtained from these two MX80 bentonite samples was then analyzed in terms of mineralogical effects (effects of the proportion of quartz and montmorillonite). It was concluded that the mineralogical effect was significant on the thermal conductivity and the swelling capacity; on the contrary, it was negligible on the water retention property.展开更多
This study aims to develop collagen-based hemostatic materials. The sheet-shaped collagen sponge was manufactured by freeze-vacuum drying the aqueous solution of collagen (Col) and heat-denatured collagen (Col’) at a...This study aims to develop collagen-based hemostatic materials. The sheet-shaped collagen sponge was manufactured by freeze-vacuum drying the aqueous solution of collagen (Col) and heat-denatured collagen (Col’) at a composition ratio of 2/1. The both sides or one side of sponge was treated with ultraviolet (UV) irradiation for 15 minutes to introduce intermolecular crosslinks between collagen molecules. The elution behavior of collagen sponge was investigated by immersing the sponge in water for a predetermined time and then by measuring the weight change. The double-sided UV-irradiated sponge showed very slow elution properties. On the other hand, the single-sided UV-irradiated sponge showed initially fast elution and subsequent very slow elution properties. Such initially fast elution of collagen molecules from the surface without UV-irradiation allows an adhesion of collagen sponge to the wound surface and results in hemostatic effect. In addition, the water absorption and retention properties of sponge were investigated by placing the hydrated sponge on a mesh for a predetermined time and then by measuring the weight change. The double-sided UV-irradiated sponge absorbed 81 times more water than own weight and showed a value of 45 times even after 7 days. The single-sided UV-irradiated sponge absorbed 80 times more water than own weight and showed a value of 39 times even after 7 days. The sponge with high water absorption and retention properties allows a wound healing effect because such sponge can absorb large amounts of blood plasma and exudates containing various cell growth factors. The double-sided UV-irradiated sponge is a good candidate for the wound dressing. On the other hand, the single-sided UV-irradiated sponge is a good candidate for the hemostatic material.展开更多
基金Projects(51908069, 51908073, 51838001, 51878070) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China+2 种基金Project(kfj190605) supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science & Technology),ChinaProject(2019IC04) supported by the Double First-Class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology, ChinaProject(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, China。
文摘The durability of silty clay embankments is partially controlled by the moisture migration, which depends on soil hydraulic properties. This paper presents an experimental study of hydraulic properties of compacted binary silty clay. Specimens with different mixing ratios and dry densities were prepared. Scanning electron microscopy and mercury intrusion porosimetry were used to characterise the microstructure of silty clay. Thereafter, falling-head permeability tests and water retention tests were conducted to study the permeability and water retention property, respectively. The results demonstrate that clay particles are dispersed and show preferred arrangements after compaction when the clay content is 100%. As the clay content decreases, the arrangement of clay particles is gradually disturbed because of the existence of silt particles, causing the formation of large pores around silt particles. When the dry density increases, the pores around silt particles significantly decrease. Moreover, the permeability of silty clay decreases but the water retention capacity increases with increasing clay content and dry density. This is because the silty clay with larger clay content and dry density has fewer large pores, which greatly restrains the flow of water. Both the permeability and water retention property of silty clay can be predicted from pore size distribution parameters.
基金Funded by the National High-tech Research and Development Program of China(863 Program)(No.2001AA322100)the National Natural Science Foundation of China(No.50772131)+1 种基金the Main Project of Ministry of Education of China(No.106086)the Fundamental Research Funds for the Central Universities of China University of Mining and Technology(Beijing)(No.2012YJ05)
文摘Aiming at the problem of available water conservation in desertification ecological restoration, we prepared the water retention materials with montmorillonite(MMT) modified by Castor Oil Polyoxyethylene Ether(10)(EL-10) emulsifying vegetable waxes. The water retention property was studied in simulated desertification climate, and the materials were analyzed and characterized by UV-Vis, SEM, FTIR and XRD measurements. Moreover, a UV carbon arc lamp was used to test the resistance to aging. The experimental results show that the emulsion has good dispersity. Both the water retention property and the aging resistance performance of the modified clay were excellent. The lamellar structure and chemical composition of MMT had no obvious changes before and after modification. The surfaces of clay particles were coated uniformly with modified MMT, so the loose clay particles were cemented together by vegetable waxes. Meanwhile, the original big hydrophilic pores between the clay particles turned into capillary hydrophobic pores. So the clay particles formed a bonding layer which could inhibit water evaporation. Grass-planting experiment showed that reasonable mass ratio of vegetable waxes and EL-10 was 1:18. The materials not only had great water retention property but also maintained sound air permeability so that the germination rate of grass seed significantly increased from 8% to 52%.
文摘Thermal conductivity, water retention curve and swelling behavior of two MX80 bentonite samples were studied in the present work. The difference obtained from these two MX80 bentonite samples was then analyzed in terms of mineralogical effects (effects of the proportion of quartz and montmorillonite). It was concluded that the mineralogical effect was significant on the thermal conductivity and the swelling capacity; on the contrary, it was negligible on the water retention property.
文摘This study aims to develop collagen-based hemostatic materials. The sheet-shaped collagen sponge was manufactured by freeze-vacuum drying the aqueous solution of collagen (Col) and heat-denatured collagen (Col’) at a composition ratio of 2/1. The both sides or one side of sponge was treated with ultraviolet (UV) irradiation for 15 minutes to introduce intermolecular crosslinks between collagen molecules. The elution behavior of collagen sponge was investigated by immersing the sponge in water for a predetermined time and then by measuring the weight change. The double-sided UV-irradiated sponge showed very slow elution properties. On the other hand, the single-sided UV-irradiated sponge showed initially fast elution and subsequent very slow elution properties. Such initially fast elution of collagen molecules from the surface without UV-irradiation allows an adhesion of collagen sponge to the wound surface and results in hemostatic effect. In addition, the water absorption and retention properties of sponge were investigated by placing the hydrated sponge on a mesh for a predetermined time and then by measuring the weight change. The double-sided UV-irradiated sponge absorbed 81 times more water than own weight and showed a value of 45 times even after 7 days. The single-sided UV-irradiated sponge absorbed 80 times more water than own weight and showed a value of 39 times even after 7 days. The sponge with high water absorption and retention properties allows a wound healing effect because such sponge can absorb large amounts of blood plasma and exudates containing various cell growth factors. The double-sided UV-irradiated sponge is a good candidate for the wound dressing. On the other hand, the single-sided UV-irradiated sponge is a good candidate for the hemostatic material.