Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt...Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt of China,is a typical geothermal anomaly and contains abundant medium-and low-temperature geothermal resources.This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region,encompassing the recharge origin,water-rock interaction mechanisms,and residence time.The results show that the geothermal water in the western region of Wugongshan is weakly alkaline,with low enthalpy and mineralization levels.The hydrochemistry of geothermal waters is dominated by Na-HCO_(3)and Na-SO_(4),while the hydrochemistry types of cold springs are all Na-HCO_(3).The hydrochemistry types of surface waters and rain waters are NaHCO_(3)or Ca-HCO_(3).The δD and δ^(18)O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m.Molar ratios of maj or solutes and isotopic compositions of^(87)Sr/^(86)Sr underscore the significant role of silicate weathering,dissolution,and cation exchange in controlling geothermal water chemistry.Additionally,geothermal waters experienced varying degrees of mixing with cold water during their ascent.Theδ^(13)C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic.Theδ^(34)S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock.Age dating using 3H and^(14)C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.展开更多
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio...The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Roads with very high traffic loads in regions where soils are low in both pH and sorption capacity might be a source of percolation water loaded with heavy metals. Looking at some "worst case" scenarios, thi...Roads with very high traffic loads in regions where soils are low in both pH and sorption capacity might be a source of percolation water loaded with heavy metals. Looking at some "worst case" scenarios, this study focused on the input of traffic related pollutants and on Pb, Cd, Cu, Zn, Ni and Cr concentrations in the soil matrix and soil solution, respectively. The analysis also included pH and electrical conductivity and at some sites DOC. The investigations were carried out on sandy soils with more or less low pH values at four motorway sites in Germany. The average of daily traffic was about 50 000 up to 90 000 vehicles. Soil pore water was collected in two soil depths and at four distances from the road. The pH in general decreased with increasing distance from the roadside. The elevated pH near the roadside was presumably caused by deposition of dust and weathering residues of the road asphalt, as well as by infiltration of salt that was used during winter time. At these road sites, increased heavy metal concentrations in the soil matrix as well as in the soil solution were found. However, the concentrations seldom exceeded reference values of the German Soil Protection Act. The soil solution concentrations tended to increase from the road edge to 10 m distance, whereas the concentration in the soil matrix decreased. Elevated DOC concentrations corresponded with elevated Cu concentrations but did not substantially change this tendency. High soil water percolation rates were found near the roads. Thus, even low metal concentrations of percolation water could yield high metal loads in a narrow area beside the road.展开更多
By comprehensively analyzing the data of geology and mining, Kriging algorithm was introduced to analyze the thematic information of geological data, to rapidly extract mining parameters for predicting mining subsiden...By comprehensively analyzing the data of geology and mining, Kriging algorithm was introduced to analyze the thematic information of geological data, to rapidly extract mining parameters for predicting mining subsidence, and to effectively integrate geomorphology and predict information. As a result, the change information of water body is successfully detected from the prediction of surface subsidence due to mining activity. Analysis shows that the elevation of farmland in the west side of water body will be lower than ever, and the west part farmland will be submerged. However, there is no evidence for impacting the villages. All the information provides a reference for efficiently assessing environmental impact due to mining activity, which can help to govern the subsidence of the area reasonably.展开更多
Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of ...Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of the subsidence lakes. The following indexes were discussed such as organic indexes (TOC, CODM,, BOD, COD), nutrient salts (TN, NH4^+, NO3, NO,, Kjeldahl Nitrogen, TP, PO4^3- ), etc. It is shown that water quality of the mining subsidence lake during the initial stage ( 2 years to 7 years) can stay relatively stable with a fluctuation during different quarters in a year, which can reach class Ill or IV of the Surthcc Water Environmental Quality Standard.展开更多
The demand for potable water is rising rapidly due to an ever-increasing population,economic activities,and dwindling water supplies.To provide adequate water supplies in the future,understanding the issues and challe...The demand for potable water is rising rapidly due to an ever-increasing population,economic activities,and dwindling water supplies.To provide adequate water supplies in the future,understanding the issues and challenges in the reuse of water and developing appropriate strategies for reuse will be critical.One way to augment water supplies for residential use is to reuse graywater- the wastewater from kitchens,bathrooms,and laundries.In this article,we critically review the evolution of water reuse,the definition of graywater,graywater reuse practices,volumes and flow in different situations,and graywater characteristics.We then examine the issues associated with different graywater treatment methods and how using graywater for irrigation around homes affects soil quality and plant growth.The study concludes that graywater treatment costs,human health risks,and its effect on soil quality are some of the challenges that need to be addressed in the future for widespread and sustainable reuse of graywater for irrigation around homes.展开更多
After water is impounded in a reservoir, rock mass in the hydro-fluctuation belt of the reservoir bank slope is subject to water saturation- dehydration circulation (WSDC). To quantify the rate of change of rock mec...After water is impounded in a reservoir, rock mass in the hydro-fluctuation belt of the reservoir bank slope is subject to water saturation- dehydration circulation (WSDC). To quantify the rate of change of rock mechanical properties, samples from the Longtan dam area were measured with uniaxial compression tests after different numbers (1, 5, 10, 15, and 20) of simulated WSDC cycles. Based on the curves derived from these tests, a modified Hock- Brown failure criterion was proposed, in which a new parameter was introduced to model the cumulative damage to rocks after WSDC. A case of an engineering application was analyzed, and the results showed that the modified Hock-Brown failure criterion is useful. Under similar WSDC-influenced engineering and geological conditions, rock mass strength parameters required for analysis and evaluation of rock slope stability can be estimated according to this modified Hoek-Brown failure criterion.展开更多
A double-sided slope with high water content in sandy clay was considered under the action of seismic load. Its failure mode and dynamic response were investigated using a hydraulic servo shaking table test. The typic...A double-sided slope with high water content in sandy clay was considered under the action of seismic load. Its failure mode and dynamic response were investigated using a hydraulic servo shaking table test. The typical characteristic of failure mode and dynamic responses of the double-sided slope were analyzed. Experimental results show that slope failure undergoes a process of progressive deformation. The slope failure mode can be explained as creep sliding landslide. AFA(Amplification Factor of Acceleration) at the surface and inner parts of the slope shows an increasing trend with the increase of relative elevation. The relationship between AFA and EAA(Excitation Amplitude of Acceleration) is nonlinear. An empirical formula is proposed to describe preferably the relationship between AFA,relative elevation and dimensionless EAA. The AFA at the middle and upper parts of the slope increases apparently with increasing EFA(Excitation Frequency of Acceleration).展开更多
Rainwater harvesting RWH has yet to see significant uptake in UK households primarily due to a lack of innovation in residential RWH system types.This ppa er presents the results of per liminary investigations into a ...Rainwater harvesting RWH has yet to see significant uptake in UK households primarily due to a lack of innovation in residential RWH system types.This ppa er presents the results of per liminary investigations into a range of traditional and innovative residential-scale RWH systems. These systems are examined using a patent application search informal interviews with industry professionals cost-benefit analysis and a simple multi criteria analysis MCA .The latter examines the sustainability of the systems based on a priori social economic and ne vironmenat l criteria.Two of the innovative systems are subject to a more detailed analysis and benchmarked agains ta rt aditional system.Results of the MCA indicate that the innovative RWH systems achieve better sustainability scores than the traditional RWH with a lower capital cost.Further research is focused on monitoring the identified systems to generate empir cal datasets in order to undertake the WLC/LCAs and to identify challenges associated with installation.展开更多
In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern di...In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs) can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water-water interaction and water-CNT interaction are also studied in this paper.展开更多
The functioning mechanism of groundwater and its make-up water in the process of ground subsidence was studied from such three aspects as osmotic corrasion, osmotic pressure effect and concretion effect, As to osmotic...The functioning mechanism of groundwater and its make-up water in the process of ground subsidence was studied from such three aspects as osmotic corrasion, osmotic pressure effect and concretion effect, As to osmotic corrasion, its forming conditions, mechanical mechanism and process were analyzed, As to osmotic pressure effect, it was mainly studied from hydrostatic pressurizing effect, sop softening effect and negative pressure sealing effect. Through concretion and saturation of soil, the factors of concretion settlement were analyzed. The results showed that both groundwater and its make-up water are important triggering factors to ground subsidence.展开更多
Mining subsidence pools are water bodies formed by soil subsidence near mines. We studied the impact the surrounding coal production activities and power plants have on these waters by measuring the concentrations of ...Mining subsidence pools are water bodies formed by soil subsidence near mines. We studied the impact the surrounding coal production activities and power plants have on these waters by measuring the concentrations of harmful trace elements in these waters. The concentration of the four elements F, Hg, Se and As increased by 0.92%, 0.78%, 0.70% and 0.81%, respectively, in the Datong mining subsidence pool from November 2004 to November 2006. The four elements increased by 1.58%, 1.23%, 1.08% and 0.92%, respectively, in the Xie’er mining subsidence pool and 1.16%, 1.06%, 1.02% and 1.01%, respectively, in the Pansan mining subsidence pool over the same time period. The absolute levels of F, Hg, Se and As in the pool are related to the background levels of the elements. A close relationship between nearby coal mines and power plants and increasing levels of the measured elements is noted.展开更多
Central Asia is located in the hinterland of Eurasia,comprising Kazakhstan,Uzbekistan,Kyrgyzstan,Turkmenistan,and Tajikistan;over 93.00%of the total area is dryland.Temperature rise and human activities have severe im...Central Asia is located in the hinterland of Eurasia,comprising Kazakhstan,Uzbekistan,Kyrgyzstan,Turkmenistan,and Tajikistan;over 93.00%of the total area is dryland.Temperature rise and human activities have severe impacts on the fragile ecosystems.Since the 1970s,nearly half the great lakes in Central Asia have shrunk and rivers are drying rapidly owing to climate changes and human activities.Water shortage and ecological crisis have attracted extensive international attention.In general,ecosystem services in Central Asia are declining,particularly with respect to biodiversity,water,and soil conservation.Furthermore,the annual average temperature and annual precipitation in Central Asia increased by 0.30℃/decade and 6.9 mm/decade in recent decades,respectively.Temperature rise significantly affected glacier retreat in the Tianshan Mountains and Pamir Mountains,which may intensify water shortage in the 21st century.The increase in precipitation cannot counterbalance the aggravation of water shortage caused by the temperature rise and human activities in Central Asia.The population of Central Asia is growing gradually,and its economy is increasing steadily.Moreover,the agricultural land has not been expended in the last two decades.Thus,water and ecological crises,such as the Aral Sea shrinkage in the 21st century,cannot be attributed to agriculture extension any longer.Unbalanced regional development and water interception/transfer have led to the irrational exploitation of water resources in some watersheds,inducing downstream water shortage and ecological degradation.In addition,accelerated industrialization and urbanization have intensified this process.Therefore,all Central Asian countries must urgently reach a consensus and adopt common measures for water and ecological protection.展开更多
In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during...In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during the reaction processes were continuously followed with a novel apparatus with three pF-meter sensors.Coarse sand,fine sand and loess were chosen as experimental media.It was experimentally observed that methane hydrate was easier formed inside coarse sand and fine sand than inside loess.Methane hydrate formation configuration and water transfer characteristics during methane hydrate formation processes were very different among the different non-saturated media,which were important for understanding methane hydrate formation and dissociation mechanism inside sediments in nature.展开更多
AIM: To determine variations in colonoscopy real-time insertion pain among investigators using three different insertion techniques.METHODS: From March 2013 through June 2014, 18-85-year-old diagnostic and 50-70-year-...AIM: To determine variations in colonoscopy real-time insertion pain among investigators using three different insertion techniques.METHODS: From March 2013 through June 2014, 18-85-year-old diagnostic and 50-70-year-old screening patients were enrolled at each center to on-demand sedation colonoscopy with water exchange(WE), water immersion(WI) and insufflation with air or CO2 for insertion and withdrawal [air or carbon dioxide(AICD)]. Data were aggregated for analysis. Primary outcome: Variations in real-time maximum insertion pain(0 = none, 1-2 = discomfort, 10 = worst).RESULTS: One thousand and ninety-one cases analyzed: WE(n = 371); WI(n = 338); AICD(n = 382). Demographics and indications were comparable. The WE group had the lowest real-time maximum insertion pain score, mean(95%CI): WE 2.8(2.6-3.0), WI 3.8(3.5-4.1) and AICD 4.4(4.1-4.7), P < 0.0005. Ninety percent of the colonoscopists were able to use water exchange to significantly decrease maximum insertion pain scores. One investigator had high insertion pain in all groups, nonetheless WE achieved the lowest real-time maximum insertion pain score. WE had the highest proportions of patients with painless unsedated colonoscopy(vs WI, P = 0.013; vs AICD, P < 0.0005); unsedated colonoscopy with only minor discomfort(vs AICD, P < 0.0005), and completion without sedation(vs AICD, P < 0.0005).CONCLUSION: Aggregate data confirm superiority of WE in lowering colonoscopy real-time maximum insertion pain and need for sedation. Ninety percent of investigators were able to use water exchange to significantly decrease maximum insertion pain scores. Our results suggest that the technique deserves consideration in a broader scale.展开更多
We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influen...We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influence of superplasticizers(SPs)on early-age drying shrinkage.In our experiments,it is found that the addition of three types of SPs leads to a significant increase in the early-age drying shrinkage of cement paste,and drying shrinkage increases with the dosage of SPs.Based on the results above,we further studied the mechanism of the effects of SPs on the early-age drying shrinkage of cement paste by PSD and water loss,which are two components of r_s.The experimental results indicate that r_s can be a better index for the early-age drying shrinkage of cement-based materials with SPs than a single factor.In addition,the effects of SPs on other factors such as hydration degree and elastic modulus were also investigated and discussed.展开更多
Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes ha...Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes have been studied by many researchers, but all the studies are so far on the water transfer characteristics outside porous media and the water transfer characteristics inside porous media have been little known. In this study, in order to study the water transfer characteristics inside porous media during methane hydrate formation and dissociation processes, a novel apparatus with three pF-meter sensors which can detect water content changes inside porous media was applied. It was experimentally observed that methane hydrate formation processes were accompanied by water transfer from bottom to top inside porous media, however, the water behavior during hydrate dissociation processes was abnormal, for which more studies are needed to find out the real reason in our future work.展开更多
This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures ...This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures and experiments using fall cone and Casagrande methods were compiled to assess the relationships among specified water content,cone penetration index ebT,and plasticity angle eaT of finegrained soils.The results indicate that no unique correlation exists among b,liquid limit of the fall cone test(LLc)and a.The water content at 1 mm cone penetration eC0T correlates well with b,plasticity ratio eRpT(i.e.the ratio of plastic limit to liquid limit),and a.Finally,the potential of using the btan a diagram to classify soil plasticity was also discussed.展开更多
To assess the water inflow which is more suitable to the actual conditions of tunnel,an empirical correlation about the permeability coefficient changing with depth is introduced.Supposing that the surrounding rock is...To assess the water inflow which is more suitable to the actual conditions of tunnel,an empirical correlation about the permeability coefficient changing with depth is introduced.Supposing that the surrounding rock is heterogeneous isotropy,the formula for calculating water inflow of tunnel with the nonlinear variation of permeability coefficient is deduced.By the contrast analysis with the existing formulas,the presented method has the similar value to them;moreover,the presented method has more simple form and easy to use.Due to parameter analysis,the water inflow decreases after considering the nonlinear variation of permeability coefficient.When the attenuation coefficient a>0,the water inflow increases first till reaches the maximum at a certain depth,then decreases and is close to 0 finally if deep enough.Thus,it is better to keep away from the certain depth where it is with the maximum water inflow for safe operation and economical construction,and reduce the water damage.Based on the analysis,the radius of tunnel has less impact on the amount of water inflow,and the water inflow just increases by 6.7% when the radius of tunnel increases by 1 m.展开更多
基金funded by the project of China Geological Survey(Grant No.DD20221677-2)the Central Public-Interest Scientific Institution Basal Research Fund(Grant No.JKYQN202307)。
文摘Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt of China,is a typical geothermal anomaly and contains abundant medium-and low-temperature geothermal resources.This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region,encompassing the recharge origin,water-rock interaction mechanisms,and residence time.The results show that the geothermal water in the western region of Wugongshan is weakly alkaline,with low enthalpy and mineralization levels.The hydrochemistry of geothermal waters is dominated by Na-HCO_(3)and Na-SO_(4),while the hydrochemistry types of cold springs are all Na-HCO_(3).The hydrochemistry types of surface waters and rain waters are NaHCO_(3)or Ca-HCO_(3).The δD and δ^(18)O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m.Molar ratios of maj or solutes and isotopic compositions of^(87)Sr/^(86)Sr underscore the significant role of silicate weathering,dissolution,and cation exchange in controlling geothermal water chemistry.Additionally,geothermal waters experienced varying degrees of mixing with cold water during their ascent.Theδ^(13)C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic.Theδ^(34)S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock.Age dating using 3H and^(14)C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金supported by the German Federal Highway Research Institute (No. 15.305/1998/GRB)
文摘Roads with very high traffic loads in regions where soils are low in both pH and sorption capacity might be a source of percolation water loaded with heavy metals. Looking at some "worst case" scenarios, this study focused on the input of traffic related pollutants and on Pb, Cd, Cu, Zn, Ni and Cr concentrations in the soil matrix and soil solution, respectively. The analysis also included pH and electrical conductivity and at some sites DOC. The investigations were carried out on sandy soils with more or less low pH values at four motorway sites in Germany. The average of daily traffic was about 50 000 up to 90 000 vehicles. Soil pore water was collected in two soil depths and at four distances from the road. The pH in general decreased with increasing distance from the roadside. The elevated pH near the roadside was presumably caused by deposition of dust and weathering residues of the road asphalt, as well as by infiltration of salt that was used during winter time. At these road sites, increased heavy metal concentrations in the soil matrix as well as in the soil solution were found. However, the concentrations seldom exceeded reference values of the German Soil Protection Act. The soil solution concentrations tended to increase from the road edge to 10 m distance, whereas the concentration in the soil matrix decreased. Elevated DOC concentrations corresponded with elevated Cu concentrations but did not substantially change this tendency. High soil water percolation rates were found near the roads. Thus, even low metal concentrations of percolation water could yield high metal loads in a narrow area beside the road.
基金Project(200911036)supported by the Ministry of Land and Resources research special,ChinaProject(2010YD05)supported by the Fundamental Research Funds for the Central Universities,China
文摘By comprehensively analyzing the data of geology and mining, Kriging algorithm was introduced to analyze the thematic information of geological data, to rapidly extract mining parameters for predicting mining subsidence, and to effectively integrate geomorphology and predict information. As a result, the change information of water body is successfully detected from the prediction of surface subsidence due to mining activity. Analysis shows that the elevation of farmland in the west side of water body will be lower than ever, and the west part farmland will be submerged. However, there is no evidence for impacting the villages. All the information provides a reference for efficiently assessing environmental impact due to mining activity, which can help to govern the subsidence of the area reasonably.
文摘Four quarters' water collecting and monitoring samples were done in the mining subsidence lakes of different water storing periods ( 2 to 7 years), considering the water storing time and pollution sources state of the subsidence lakes. The following indexes were discussed such as organic indexes (TOC, CODM,, BOD, COD), nutrient salts (TN, NH4^+, NO3, NO,, Kjeldahl Nitrogen, TP, PO4^3- ), etc. It is shown that water quality of the mining subsidence lake during the initial stage ( 2 years to 7 years) can stay relatively stable with a fluctuation during different quarters in a year, which can reach class Ill or IV of the Surthcc Water Environmental Quality Standard.
文摘The demand for potable water is rising rapidly due to an ever-increasing population,economic activities,and dwindling water supplies.To provide adequate water supplies in the future,understanding the issues and challenges in the reuse of water and developing appropriate strategies for reuse will be critical.One way to augment water supplies for residential use is to reuse graywater- the wastewater from kitchens,bathrooms,and laundries.In this article,we critically review the evolution of water reuse,the definition of graywater,graywater reuse practices,volumes and flow in different situations,and graywater characteristics.We then examine the issues associated with different graywater treatment methods and how using graywater for irrigation around homes affects soil quality and plant growth.The study concludes that graywater treatment costs,human health risks,and its effect on soil quality are some of the challenges that need to be addressed in the future for widespread and sustainable reuse of graywater for irrigation around homes.
基金supported by the National Natural Science Foundation of China under No. 41630639the National Basic Research Program of China (2014CB744703)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JQ4014)China Postdoctoral Science Foundation (2016M602743)
文摘After water is impounded in a reservoir, rock mass in the hydro-fluctuation belt of the reservoir bank slope is subject to water saturation- dehydration circulation (WSDC). To quantify the rate of change of rock mechanical properties, samples from the Longtan dam area were measured with uniaxial compression tests after different numbers (1, 5, 10, 15, and 20) of simulated WSDC cycles. Based on the curves derived from these tests, a modified Hock- Brown failure criterion was proposed, in which a new parameter was introduced to model the cumulative damage to rocks after WSDC. A case of an engineering application was analyzed, and the results showed that the modified Hock-Brown failure criterion is useful. Under similar WSDC-influenced engineering and geological conditions, rock mass strength parameters required for analysis and evaluation of rock slope stability can be estimated according to this modified Hoek-Brown failure criterion.
基金supported by National Natural Science Foundation of China (Grant No. 10902112)the Fundamental Research the CentralUniversities (2682017QY02)+1 种基金 the National Key R&D Program of China (2016YFC0802203)the Youth Innovation Promotion Association CAS
文摘A double-sided slope with high water content in sandy clay was considered under the action of seismic load. Its failure mode and dynamic response were investigated using a hydraulic servo shaking table test. The typical characteristic of failure mode and dynamic responses of the double-sided slope were analyzed. Experimental results show that slope failure undergoes a process of progressive deformation. The slope failure mode can be explained as creep sliding landslide. AFA(Amplification Factor of Acceleration) at the surface and inner parts of the slope shows an increasing trend with the increase of relative elevation. The relationship between AFA and EAA(Excitation Amplitude of Acceleration) is nonlinear. An empirical formula is proposed to describe preferably the relationship between AFA,relative elevation and dimensionless EAA. The AFA at the middle and upper parts of the slope increases apparently with increasing EFA(Excitation Frequency of Acceleration).
基金Severn Trent Water and the EPSRC as part of the STREAM Engineering Doctorate Program
文摘Rainwater harvesting RWH has yet to see significant uptake in UK households primarily due to a lack of innovation in residential RWH system types.This ppa er presents the results of per liminary investigations into a range of traditional and innovative residential-scale RWH systems. These systems are examined using a patent application search informal interviews with industry professionals cost-benefit analysis and a simple multi criteria analysis MCA .The latter examines the sustainability of the systems based on a priori social economic and ne vironmenat l criteria.Two of the innovative systems are subject to a more detailed analysis and benchmarked agains ta rt aditional system.Results of the MCA indicate that the innovative RWH systems achieve better sustainability scores than the traditional RWH with a lower capital cost.Further research is focused on monitoring the identified systems to generate empir cal datasets in order to undertake the WLC/LCAs and to identify challenges associated with installation.
文摘In this paper we present some simulation results about the behaviour of water molecules inside a single wall carbon nanotube (SWNT). We find that the confinement of water in an SWNT can induce a wave-like pattern distribution along the channel axis, similar phenomena are also observed in biological water channels. Carbon nanotubes(CNTs) can serve as simple nonpolar water channels. Molecular transport through narrow CNTs is highly collective because of tight hydrogen bonds in the protective environment of the pore. The hydrogen bond net is important for proton and other signal transports. The average dipoles of water molecules inside CNTs (7,7), (8,8) and (9,9) are discussed in detail. Simulation results indicate that the states of dipole are affected by the diameter of SWNT. The number of hydrogen bonds, the water-water interaction and water-CNT interaction are also studied in this paper.
基金financially supported by the National Nature Science Foundation of China (No.50490271)the National Key Technologies R & D Program of China (No.2004BA615A-18).
文摘The functioning mechanism of groundwater and its make-up water in the process of ground subsidence was studied from such three aspects as osmotic corrasion, osmotic pressure effect and concretion effect, As to osmotic corrasion, its forming conditions, mechanical mechanism and process were analyzed, As to osmotic pressure effect, it was mainly studied from hydrostatic pressurizing effect, sop softening effect and negative pressure sealing effect. Through concretion and saturation of soil, the factors of concretion settlement were analyzed. The results showed that both groundwater and its make-up water are important triggering factors to ground subsidence.
基金Projects 070414168 supported by the Provincial University National Natural Science Foundation of Anhui2006KJ009A by the Key National Science Foundation of Anhui Province
文摘Mining subsidence pools are water bodies formed by soil subsidence near mines. We studied the impact the surrounding coal production activities and power plants have on these waters by measuring the concentrations of harmful trace elements in these waters. The concentration of the four elements F, Hg, Se and As increased by 0.92%, 0.78%, 0.70% and 0.81%, respectively, in the Datong mining subsidence pool from November 2004 to November 2006. The four elements increased by 1.58%, 1.23%, 1.08% and 0.92%, respectively, in the Xie’er mining subsidence pool and 1.16%, 1.06%, 1.02% and 1.01%, respectively, in the Pansan mining subsidence pool over the same time period. The absolute levels of F, Hg, Se and As in the pool are related to the background levels of the elements. A close relationship between nearby coal mines and power plants and increasing levels of the measured elements is noted.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences:the Pan-Third Pole Environment Study for a Green Silk Road(XDA20060303)the CAS''Light of West China''Program(2018-XBQNXZ-B-017)the''High-level Talents Program''of Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(Y871171).Special thanks are given to the Philosophy and Social Science Major Research Project"Research on the Major Risk Prevention System in the Development of Artificial Intelligence"(20JZD026)funded by the Ministry of Education of the People's Republic of China.
文摘Central Asia is located in the hinterland of Eurasia,comprising Kazakhstan,Uzbekistan,Kyrgyzstan,Turkmenistan,and Tajikistan;over 93.00%of the total area is dryland.Temperature rise and human activities have severe impacts on the fragile ecosystems.Since the 1970s,nearly half the great lakes in Central Asia have shrunk and rivers are drying rapidly owing to climate changes and human activities.Water shortage and ecological crisis have attracted extensive international attention.In general,ecosystem services in Central Asia are declining,particularly with respect to biodiversity,water,and soil conservation.Furthermore,the annual average temperature and annual precipitation in Central Asia increased by 0.30℃/decade and 6.9 mm/decade in recent decades,respectively.Temperature rise significantly affected glacier retreat in the Tianshan Mountains and Pamir Mountains,which may intensify water shortage in the 21st century.The increase in precipitation cannot counterbalance the aggravation of water shortage caused by the temperature rise and human activities in Central Asia.The population of Central Asia is growing gradually,and its economy is increasing steadily.Moreover,the agricultural land has not been expended in the last two decades.Thus,water and ecological crises,such as the Aral Sea shrinkage in the 21st century,cannot be attributed to agriculture extension any longer.Unbalanced regional development and water interception/transfer have led to the irrational exploitation of water resources in some watersheds,inducing downstream water shortage and ecological degradation.In addition,accelerated industrialization and urbanization have intensified this process.Therefore,all Central Asian countries must urgently reach a consensus and adopt common measures for water and ecological protection.
基金supported by the CAS Knowledge Innovation Key Project (Grant No.KZCX2-YW-330)the National Science Fund Fostering Talents in Basic Research to Glaciology and Geocryology (Grant No.J0630966)
文摘In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during the reaction processes were continuously followed with a novel apparatus with three pF-meter sensors.Coarse sand,fine sand and loess were chosen as experimental media.It was experimentally observed that methane hydrate was easier formed inside coarse sand and fine sand than inside loess.Methane hydrate formation configuration and water transfer characteristics during methane hydrate formation processes were very different among the different non-saturated media,which were important for understanding methane hydrate formation and dissociation mechanism inside sediments in nature.
文摘AIM: To determine variations in colonoscopy real-time insertion pain among investigators using three different insertion techniques.METHODS: From March 2013 through June 2014, 18-85-year-old diagnostic and 50-70-year-old screening patients were enrolled at each center to on-demand sedation colonoscopy with water exchange(WE), water immersion(WI) and insufflation with air or CO2 for insertion and withdrawal [air or carbon dioxide(AICD)]. Data were aggregated for analysis. Primary outcome: Variations in real-time maximum insertion pain(0 = none, 1-2 = discomfort, 10 = worst).RESULTS: One thousand and ninety-one cases analyzed: WE(n = 371); WI(n = 338); AICD(n = 382). Demographics and indications were comparable. The WE group had the lowest real-time maximum insertion pain score, mean(95%CI): WE 2.8(2.6-3.0), WI 3.8(3.5-4.1) and AICD 4.4(4.1-4.7), P < 0.0005. Ninety percent of the colonoscopists were able to use water exchange to significantly decrease maximum insertion pain scores. One investigator had high insertion pain in all groups, nonetheless WE achieved the lowest real-time maximum insertion pain score. WE had the highest proportions of patients with painless unsedated colonoscopy(vs WI, P = 0.013; vs AICD, P < 0.0005); unsedated colonoscopy with only minor discomfort(vs AICD, P < 0.0005), and completion without sedation(vs AICD, P < 0.0005).CONCLUSION: Aggregate data confirm superiority of WE in lowering colonoscopy real-time maximum insertion pain and need for sedation. Ninety percent of investigators were able to use water exchange to significantly decrease maximum insertion pain scores. Our results suggest that the technique deserves consideration in a broader scale.
基金Funded by the Key Research and Development Program of Zhejiang Province in 2018(No2018C03033-1)。
文摘We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influence of superplasticizers(SPs)on early-age drying shrinkage.In our experiments,it is found that the addition of three types of SPs leads to a significant increase in the early-age drying shrinkage of cement paste,and drying shrinkage increases with the dosage of SPs.Based on the results above,we further studied the mechanism of the effects of SPs on the early-age drying shrinkage of cement paste by PSD and water loss,which are two components of r_s.The experimental results indicate that r_s can be a better index for the early-age drying shrinkage of cement-based materials with SPs than a single factor.In addition,the effects of SPs on other factors such as hydration degree and elastic modulus were also investigated and discussed.
基金financially supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW- 330)the National Science Fund FosteringTalents in Basic Research to Glaciology and Geocryology (Grant No. J0630966)
文摘Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes have been studied by many researchers, but all the studies are so far on the water transfer characteristics outside porous media and the water transfer characteristics inside porous media have been little known. In this study, in order to study the water transfer characteristics inside porous media during methane hydrate formation and dissociation processes, a novel apparatus with three pF-meter sensors which can detect water content changes inside porous media was applied. It was experimentally observed that methane hydrate formation processes were accompanied by water transfer from bottom to top inside porous media, however, the water behavior during hydrate dissociation processes was abnormal, for which more studies are needed to find out the real reason in our future work.
文摘This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures and experiments using fall cone and Casagrande methods were compiled to assess the relationships among specified water content,cone penetration index ebT,and plasticity angle eaT of finegrained soils.The results indicate that no unique correlation exists among b,liquid limit of the fall cone test(LLc)and a.The water content at 1 mm cone penetration eC0T correlates well with b,plasticity ratio eRpT(i.e.the ratio of plastic limit to liquid limit),and a.Finally,the potential of using the btan a diagram to classify soil plasticity was also discussed.
基金Projects(51478477,51508562,51508563)supported by the National Natural Science Foundation of China
文摘To assess the water inflow which is more suitable to the actual conditions of tunnel,an empirical correlation about the permeability coefficient changing with depth is introduced.Supposing that the surrounding rock is heterogeneous isotropy,the formula for calculating water inflow of tunnel with the nonlinear variation of permeability coefficient is deduced.By the contrast analysis with the existing formulas,the presented method has the similar value to them;moreover,the presented method has more simple form and easy to use.Due to parameter analysis,the water inflow decreases after considering the nonlinear variation of permeability coefficient.When the attenuation coefficient a>0,the water inflow increases first till reaches the maximum at a certain depth,then decreases and is close to 0 finally if deep enough.Thus,it is better to keep away from the certain depth where it is with the maximum water inflow for safe operation and economical construction,and reduce the water damage.Based on the analysis,the radius of tunnel has less impact on the amount of water inflow,and the water inflow just increases by 6.7% when the radius of tunnel increases by 1 m.